SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th

กรอง
ตาราง ผลงานตีพิมพ์ Scopus ของ นาบิล หะยีมะแซ
ลำดับรายละเอียดผลงาน
1Majid N., , Mohd Sani N., Hayeemasae N., , Masraff M. and Raa Khimi S. (2024). Facial fabrication of self-healing natural rubber foam based on zinc thiolate ionic networks. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.55280
2Mohd Sani N., Majid N., Rehman A., Hayeemasae N., Radhakrishnan S., Kulkarni M. and Khimi R. (2023). A review of the recent development in self-healing rubbers and their quantification methods. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606231200952
3Masa A., Jehsoh N., Dueramae S. and Hayeemasae N. (2023). Boosting the Antibacterial Performance of Natural Rubber Latex Foam by Introducing Silver-Doped Zinc Oxide. Polymers, 15(4)
Cited: 0 doi: https://doi.org/10.3390/polym15041040
4Mohd Sani N., Thajudin N., Hayeemasae N. and Raa Khimi S. (2023). Effect of Zn2+ salt bonding on thermo-reversible self-healing natural rubber. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53924
5Jaratrotkamjorn R., Hayeemasae N., Zakaria Z. and Masa A. (2023). Influence of acid concentration on thermomechanical, tensile and thermal properties of cyclized natural rubber. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443231173827
6Surya I., Marpongahtun n. and Hayeemasae N. (2023). Oleamide as palm-oil based substance for silica-loaded styrene butadiene rubber compound: The cure and crosslinks behaviors. IOP Conference Series: Earth and Environmental Science, 1241(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1241/1/012096
7Mohamed N., Othman N., and Hayeemasae N. (2023). Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iranian Polymer Journal (English Edition)
Cited: 0 doi: https://doi.org/10.1007/s13726-023-01203-7
8Masa A., Songkhla, Worlee A., Pattani, Matchawet S. and Yala (2023). Property Enhancement of NR/ Halloysite Nanotubes Composites by Introducing dual Modification. KGK Kautschuk Gummi Kunststoffe, 76(1), 54-60.
Cited: 0
9Baru F., Saiwari S. and Hayeemasae N. (2022). Classification of natural rubber foam grades by optimising the azodicarbonamide content. Polimeros, 32(2)
Cited: 0 doi: https://doi.org/10.1590/0104-1428.20210111
10Hayeemasae N., Adair A. and Masa A. (2022). COMPARATIVE STUDY ON VISCOSITIES, STRESS RELAXATION, CURING AND MECHANICAL PROPERTIES OF SEPIOLITE AND SILICA FILLED NATURAL RUBBER COMPOSITES. Malaysian Journal of Analytical Sciences, 26(2), 176-190.
Cited: 0
11Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Effect of hybrid carbon black/lignin on rheological, mechanical and thermal stability properties of NR/BR composites. Plastics, Rubber and Composites, 51(6), 293-305.
Cited: 1 doi: https://doi.org/10.1080/14658011.2021.1981718
12Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2022). EFFECT OF VULCANIZATION SYSTEMS AND CROSSLINK DENSITY ON TENSILE PROPERTIES AND NETWORK STRUCTURES OF NATURAL RUBBER. Jurnal Teknologi, 84(6), 181-187.
Cited: 0 doi: https://doi.org/10.11113/jurnalteknologi.v84.16467
13Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties. Industrial Crops and Products, 185
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2022.115167
14Rushdan A., Sapuan S., Bayraktar E., Hassan S., Hayeemasae N., Atikah M. and Shaker K. (2022). Fibre-Reinforced Polymer Composites: Mechanical Properties and Applications. Polymers, 14(18)
Cited: 0 doi: https://doi.org/10.3390/polym14183732
15Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Mechanical and other related properties. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 111-134.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-6
16Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Morphology and crystallization of the composites. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 135-158.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-7
17Hayeemasae N., Saiwari S., Soontaranon S. and Masa A. (2022). Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Polymers, 14(13)
Cited: 0 doi: https://doi.org/10.3390/polym14132713
18Hayeemasae N., Adair A., Rasidi M., Jitsopin P. and Masa A. (2022). Influence of Sepiolite Addition Methods and Contents on Physical Properties of Natural Rubber Composites. Science and Technology Indonesia, 7(2), 140-148.
Cited: 0 doi: https://doi.org/10.26554/sti.2022.7.2.140-148
19Ridho M., Agustiany E., Rahmi Dn M., Madyaratri E., Ghozali M., Restu W., Falah F., Rahandi Lubis M., Syamani F., Nurhamiyah Y., Hidayati S., Sohail A., Karungamye P., Nawawi D., Iswanto A., Othman N., Mohamad Aini N., Hussin M., Sahakaro K. and Hayeema (2022). Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022
Cited: 0 doi: https://doi.org/10.1155/2022/1363481
20Chew J., Wahab M., Zulkeply N., Razak M. and Hayeemasae N. (2022). Preparation and characterization of NE-7150 and NE-7170 silicone rubber blend with different ratios and curing agents loading. AIP Conference Proceedings, 2496
Cited: 0 doi: https://doi.org/10.1063/5.0091399
21Saiwari S., Nobnop S., Bueraheng Y., Thitithammawong A., Hayeemasae N. and Salaeh S. (2022). Segregated MWCNT Structure Formation in Conductive Rubber Nanocomposites by Circular Recycling of Rubber Waste. ACS Applied Polymer Materials
Cited: 0 doi: https://doi.org/10.1021/acsapm.2c01203
22Saiwari S., Hayeemasae N., Soontaranon S., Kalkornsurapranee E., Jaratrotkamjorn R. and Masa A. (2022). Structure-Property relationships in natural rubber representing several clonal varieties of Hevea Brasiliensis. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606221127372
23Hayeemasae N. and Ismail H. (2021). Application of Silane-treated Tea Waste Powder as a Potential Filler for Natural Rubber Composites. BioResources, 16(1), 1230-1244.
Cited: 3 doi: https://doi.org/10.15376/biores.16.1.1230-1244
24Masa A., Hayeemasae N., Soontaranon S., Pisal M. and Rasidi M. (2021). Effect of stretching rate on tensile response and crystallization behavior of crosslinked natural rubber. Malaysian Journal of Fundamental and Applied Sciences, 17(3), 217-225.
Cited: 0 doi: https://doi.org/10.11113/MJFAS.V17N3.2039
25Hayeemasae N., Soontaranon S., Rasidi M. and Masa A. (2021). ensile and structural properties of natural rubber vulcanizates with different mastication times. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09120
26Jitsopin P., Masa A., Hayeemasae N. and Rasidi M. (2021). Influence of Preparation Method on Properties of Natural Rubber/Sepiolite Composites. Journal of Physics: Conference Series, 2129(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2129/1/012075
27Jehsoh N., Surya I., Sahakaro K., Ismail H. and Hayeemasae N. (2021). Modified palm stearin compatibilized natural rubber/halloysite nanotubes composites: Reinforcement versus strain-induced crystallization. Journal of Elastomers and Plastics, 53(3), 210-227.
Cited: 3 doi: https://doi.org/10.1177/0095244320928573
28Surya I., Waesateh K., Saiwari S., Ismail H., Othman N. and Hayeemasae N. (2021). Potency of urea-treated halloysite nanotubes for the simultaneous boosting of mechanical properties and crystallization of epoxidized natural rubber composites. Polymers, 13(18)
Cited: 2 doi: https://doi.org/10.3390/polym13183068
29Hayeemasae N. and Ismail H. (2021). Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09720
30Surya I., Waesateh K., Masa A. and Hayeemasae N. (2021). Selectively etched halloysite nanotubes as performance booster of epoxidized natural rubber composites. Polymers, 13(20)
Cited: 3 doi: https://doi.org/10.3390/polym13203536
31Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2021). The effect of mastication time on the physical properties and structure of natural rubber. Journal of Elastomers and Plastics, 53(3), 228-240.
Cited: 1 doi: https://doi.org/10.1177/0095244320928566
32Surya I., Masa A., Ismail H. and Hayeemasae N. (2020). Acid-treated halloysite nanotubes filled natural rubber composites. IOP Conference Series: Materials Science and Engineering, 801(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/801/1/012087
33Worlee A., Homdong N. and Hayeemasae N. (2020). Application of polymer blend based on natural rubber latex and acrylic resin as a binder for wall paints. IOP Conference Series: Materials Science and Engineering, 773(1)
Cited: 1 doi: https://doi.org/10.1088/1757-899X/773/1/012032
34Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2020). BETTER BALANCE OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUND PROPERTIES BY THE USE OF MONTMORILLONITE WITH OPTIMUM SURFACE MODIFIER CONTENT. Rubber Chemistry and Technology, 93(3), 548-566.
Cited: 6 doi: https://doi.org/10.5254/rct.20.80407
35Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. International Journal of Biological Macromolecules, 154, 1255-1264.
Cited: 4 doi: https://doi.org/10.1016/j.ijbiomac.2019.10.280
36Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Influence of hydroxymethylated lignin on mechanical properties and payne effect of NR/BR compounds. Malaysian Journal of Analytical Sciences, 24(5), 810-819.
Cited: 0
37Masa A., Soontaranon S. and Hayeemasae N. (2020). Influence of Sulfur/Accelerator Ratio on Tensile Properties and Structural Inhomogeneity of Natural Rubber. Polymer (Korea), 44(4), 519-526.
Cited: 2 doi: https://doi.org/10.7317/pk.2020.44.4.519
38Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 6
Cited: 30 doi: https://doi.org/10.3389/fmats.2019.00329
39Hayeemasae N., Sensem Z., Sahakaro K. and Ismail H. (2020). Maleated natural rubber/halloysite nanotubes composites. Processes, 8(3)
Cited: 3 doi: https://doi.org/10.3390/pr8030286
40Fathurrohman M., Hayeemasae N. and Sahakaro K. (2020). Mechanical and Dynamical Properties of Natural Rubber-Montmorillonite Nanocomposites by Using In Situ Organomodified and Latex Compounding Method. Macromolecular Symposia, 391(1)
Cited: 0 doi: https://doi.org/10.1002/masy.201900130
41Masa A., Krem-Ae A., Ismail H. and Hayeemasae N. (2020). Possible use of sepiolite as alternative filler for natural rubber. Materials Research, 23(4)
Cited: 3 doi: https://doi.org/10.1590/1980-5373-MR-2020-0100
42Hayeemasae N., Sahakaro K. and Ismail H. (2020). Properties of unmodified and modified natural rubber/halloysite nanotubes composites. AIP Conference Proceedings, 2267
Cited: 0 doi: https://doi.org/10.1063/5.0016132
43Hayeemasae N. and Masa A. (2020). Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates. Polimeros, 30(2)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.03120
44Hayeemasae N., Sensem Z., Surya I., Sahakaro K. and Ismail H. (2020). Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers, 12(4)
Cited: 8 doi: https://doi.org/10.3390/POLYM12040766
45Hayeemasae N. and Ismail H. (2020). Synergistic improvement of mechanical and magnetic properties of a new magnetorheological elastomer composites based on natural rubber and powdered waste natural rubber glove. Polimeros, 30(2)
Cited: 2 doi: https://doi.org/10.1590/0104-1428.10719
46Hayeemasae N. and Ismail H. (2020). Tea waste/carbon black hybrid filled natural rubber composites. Malaysian Journal of Fundamental and Applied Sciences, 16(6), 366-370.
Cited: 0 doi: https://doi.org/10.11113/mjfas.v16n6.1897
47Hayeemasae N. and Ismail H. (2020). Utilization of tea waste as an alternative filler for natural rubber. Jurnal Teknologi, 82(4), 109-115.
Cited: 3 doi: https://doi.org/10.11113/jt.v82.14400
48Hayeemasae N., Norhayati S., Ros M. and Ismail H. (2019). A new magnetorheological Elastomer based on natural Rubber/Waste Natural Rubber Glove Blends. KGK Kautschuk Gummi Kunststoffe, 72(1-2), 49-54.
Cited: 0
49Hayeemasae N. and Ismail H. (2019). Curing and swelling kinetics of new magnetorheological elastomer based on natural rubber/waste natural rubber gloves composites. Journal of Elastomers and Plastics, 51(7-8), 583-602.
Cited: 3 doi: https://doi.org/10.1177/0095244318803987
50Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2019). Dispersion and properties of natural rubber-montmorillonite nanocomposites fabricated by novel in situ organomodified and latex compounding method. Polymer Engineering and Science, 59(9), 1830-1839.
Cited: 7 doi: https://doi.org/10.1002/pen.25183
51Saiwari S., Waesateh K., Worlee A., Hayeemasae N., Pattani, Nakason C. and Thani S. (2019). Effects of devulcanization aid on mechanical and thermal properties of devulcanized rubber/virgin natural rubber blends. KGK Kautschuk Gummi Kunststoffe, 72(5), 35-41.
Cited: 2
52Hayeemasae N. and Ismail H. (2019). Enhancing the thermal stability of natural rubber/recycled ethylene propylene diene rubber blends through the use of bio-compatibilizers. Journal of Vinyl and Additive Technology, 25, E155-E165.
Cited: 4 doi: https://doi.org/10.1002/vnl.21674
53Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5)
Cited: 18 doi: https://doi.org/10.3390/pr7050315
54Hayeemasae N., Ismail H., Matchawet S. and Masa A. (2019). Kinetic of thermal degradation and thermal stability of natural rubber filled with titanium dioxide nanoparticles. Polymer Composites, 40(8), 3149-3155.
Cited: 5 doi: https://doi.org/10.1002/pc.25163
55Saiwari S., Sripornsawat B. and Hayeemasae N. (2019). Novel thermoplastic vulcanizates based on polyamide 12 blends: Influence of modified devulcanized natural rubber gloves on properties of the blends. Journal of Metals, Materials and Minerals, 29(3), 25-31.
Cited: 1 doi: https://doi.org/10.14456/jmmm.2019.30
56Hayeemasae N. and Ismail H. (2019). Reinforcement of epoxidized natural rubber through the addition of sepiolite. Polymer Composites, 40(3), 924-931.
Cited: 12 doi: https://doi.org/10.1002/pc.24762
57Hayeemasae N., Salleh S. and Ismail H. (2019). Sustainable Use of Chloroprene Rubber Waste as Blend Component with Natural Rubber, Epoxidized Natural Rubber and Styrene Butadiene Rubber. Journal of Polymers and the Environment, 27(10), 2119-2130.
Cited: 1 doi: https://doi.org/10.1007/s10924-019-01503-1
58Hayeemasae N., Song L. and Ismail H. (2019). Sustainable use of eggshell powder in the composite based on recycled polystyrene and virgin polystyrene mixture. International Journal of Polymer Analysis and Characterization, 24(3), 266-275.
Cited: 8 doi: https://doi.org/10.1080/1023666X.2019.1567089
59Hayeemasae N., Salleh S. and Ismail H. (2019). Using chloroprene rubber waste in rubber blends: Optimizing performance by adding fillers. Green Materials, 7(4), 156-167.
Cited: 1 doi: https://doi.org/10.1680/jgrma.18.00086
60Hayeemasae N., Salleh S. and Ismail H. (2019). Utilization of chloroprene rubber waste as blending component with natural rubber: aspect on metal oxide contents. Journal of Material Cycles and Waste Management, 21(5), 1095-1105.
Cited: 2 doi: https://doi.org/10.1007/s10163-019-00862-0
61Surya I., Hayeemasae N. and Ginting M. (2018). Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/343/1/012009
62Yasin S., Aziz K., Bakar I., Hayeemasae N. and Asiah S. (2018). Durability of helmet material under longitudinal and lateral drop impact. AIP Conference Proceedings, 2031
Cited: 0 doi: https://doi.org/10.1063/1.5066991
63Hayeemasae N., Rathnayake W. and Ismail H. (2018). Effect of ZnO nanoparticles on the simultaneous improvement in curing and mechanical properties of NR/ Recycled EPDM blends. Progress in Rubber, Plastics and Recycling Technology, 34(1), 1-18.
Cited: 2 doi: https://doi.org/10.1177/147776061803400101
64Surya I. and Hayeemasae N. (2018). Effects of alkanolamide addition on crosslink density, mechanical and morphological properties of chloroprene rubber compounds. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 15 doi: https://doi.org/10.1088/1757-899X/343/1/012028
65Waesateh K., Saiwari S., Ismail H., Othman N., Soontaranon S. and Hayeemasae N. (2018). Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. International Journal of Polymer Analysis and Characterization, 23(3), 260-270.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2018.1438773
66Hayeemasae N., Surya I. and Ismail H. (2018). Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/309/1/012110
67Abdul Majid R., Ismail H. and Hayeemasae N. (2018). Poly(Vinyl Chloride)/Epoxidized Natural Rubber/Kenaf Powder Composites. Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications, 283-312.
Cited: 1 doi: https://doi.org/10.1016/B978-0-08-102160-6.00015-9
68Surya I., Sukeksi L. and Hayeemasae N. (2018). Studies on cure index, swelling behaviour, tensile and thermooxidative properties of natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/309/1/012060
69Hayeemasae N., Rathnayake W. and Ismail H. (2017). Nano-sized TiO2-reinforced natural rubber composites prepared by latex compounding method. Journal of Vinyl and Additive Technology, 23(3), 200-209.
Cited: 20 doi: https://doi.org/10.1002/vnl.21497
70Hayeemasae N., Surya I. and Ismail H. (2016). Compatibilized natural rubber/recycled ethylene-propylene-diene rubber blends by biocompatibilizer. International Journal of Polymer Analysis and Characterization, 21(5), 396-407.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2016.1160970
71Hayeemasae N., Ismail H., Khoon T., Husseinsyah S. and Harahap H. (2016). Effect of carbon black on the properties of polypropylene/recycled natural rubber glove blends. Progress in Rubber, Plastics and Recycling Technology, 32(4), 241-252.
Cited: 4 doi: https://doi.org/10.1177/147776061603200404
72Ismail H., Khoon T., Hayeemasae N. and Salmah H. (2015). Effect of oil palm ash on the properties of polypropylene/recycled natural rubber gloves/oil palm ash composites. BioResources, 10(1), 1495-1505.
Cited: 11 doi: https://doi.org/10.15376/biores.10.1.1495-1505
73Hayeemasae N., Ismail H. and Rashid A. (2015). Optimization of accelerators on curing characteristics, tensile, and dynamic mechanical properties of (natural rubber)/(recycled ethylene-propylene-diene-monomer) blends. Journal of Vinyl and Additive Technology, 21(2), 79-88.
Cited: 9 doi: https://doi.org/10.1002/vnl.21358
74Hayeemasae N. and Ismail H. (2015). Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites. Journal of Thermoplastic Composite Materials, 28(3), 415-430.
Cited: 5 doi: https://doi.org/10.1177/0892705713486124
75Hayeemasae N. and Ismail H. (2015). Thermo-Mechanical Performance of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends in the Presence of ZnO Nanoparticles. International Journal of Polymer Analysis and Characterization, 20(6), 514-528.
Cited: 7 doi: https://doi.org/10.1080/1023666X.2015.1050905
76Hayeemasae N. and Ismail H. (2014). Blending of Natural Rubber/Recycled Ethylene-Propylene-diene Rubber: Promoting the Interfacial Adhesion Between Phases by Natural Rubber Latex. International Journal of Polymer Analysis and Characterization, 19(2), 159-174.
Cited: 4 doi: https://doi.org/10.1080/1023666X.2014.873597
77Hayeemasae N., Ismail H. and Rashid A. (2014). Comparison of thermal stability of sulfur, peroxide and EB irradiation cured NR compounds containing ground EPDM waste. Advanced Materials Research, 844, 267-271.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.267
78Hayeemasae N. and Ismail H. (2014). Dynamic mechanical behavior of natural rubber/waste ethylene-propylene- diene rubber blends. KGK Kautschuk Gummi Kunststoffe, 67(7-8), 33-39.
Cited: 2
79Hayeemasae N. and Ismail H. (2014). Enhancing the thermal stability of natural rubber/recycled ethylene-propylene-diene rubber blends by means of introducing pre-vulcanised ethylene-propylene-diene rubber and electron beam irradiation. Materials and Design, 56, 1057-1067.
Cited: 19 doi: https://doi.org/10.1016/j.matdes.2013.12.020
80Hayeemasae N. and Ismail H. (2014). Fatigue life, thermal analysis and morphology of recycled poly(ethylene terephthalate)/commercial fillers hybrid filled natural rubber composites. Progress in Rubber, Plastics and Recycling Technology, 30(2), 115-128.
Cited: 7 doi: https://doi.org/10.1177/147776061403000204
81Hayeemasae N., Ismail H. and Rashid A. (2014). Optimisation of accelerators and vulcanising systems on thermal stability of natural rubber/recycled ethylene-propylene-diene-monomer blends. Materials and Design, 53, 651-661.
Cited: 36 doi: https://doi.org/10.1016/j.matdes.2013.06.078
82Hayeemasae N., Ismail H. and Rashid A. (2014). Properties of natural rubber/recycled ethylene-propylene-diene rubber blends prepared using various vulcanizing systems. Iranian Polymer Journal (English Edition), 23(1), 37-45.
Cited: 16 doi: https://doi.org/10.1007/s13726-013-0197-4
83Hayeemasae N., Ismail H. and Thevy Ratnam C. (2014). Simultaneous Enhancement of Mechanical and Dynamic Mechanical Properties of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends by Electron Beam Irradiation. International Journal of Polymer Analysis and Characterization, 19(3), 272-285.
Cited: 12 doi: https://doi.org/10.1080/1023666X.2014.880023
84Hayeemasae N. and Ismail H. (2014). Thermal stability and aging characteristics of (natural rubber)/(waste ethylene-propylene-diene monomer terpolymer) blends. Journal of Vinyl and Additive Technology, 20(2), 99-107.
Cited: 5 doi: https://doi.org/10.1002/vnl.21334
85Hayeemasae N., Ismail H. and Rashid A. (2013). Blending of Natural Rubber/Recycled Ethylene-Propylene-Diene Monomer: Cure Behaviors and Mechanical Properties. Polymer - Plastics Technology and Engineering, 52(5), 501-509.
Cited: 22 doi: https://doi.org/10.1080/03602559.2012.762020
86Hayeemasae N., Ismail H. and Rashid A. (2013). Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends. Polymer Testing, 32(4), 631-639.
Cited: 49 doi: https://doi.org/10.1016/j.polymertesting.2013.03.019
87Hayeemasae N., Ismail H. and Rashid A. (2013). Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends. Polymer Testing, 32(2), 385-393.
Cited: 73 doi: https://doi.org/10.1016/j.polymertesting.2012.11.003
88Hayeemasae N., Ismail H. and Rashid A. (2013). Effects of virgin Ethylene-Propylene-Diene-Monomer and its preheating time on the properties of natural rubber/recycled Ethylene-Propylene-Diene-Monomer blends. Materials and Design, 50, 27-37.
Cited: 21 doi: https://doi.org/10.1016/j.matdes.2013.02.086
89Hayeemasae N., Ismail H. and Rashid A. (2012). Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. Journal of Vinyl and Additive Technology, 18(2), 139-146.
Cited: 28 doi: https://doi.org/10.1002/vnl.20291
90Hayeemasae N., Ismail H. and Rashid A. (2011). Recycled polyethylene terephthalate filled natural rubber compounds: Effects of filler loading and types of matrix. Journal of Elastomers and Plastics, 43(5), 429-449.
Cited: 29 doi: https://doi.org/10.1177/0095244311405503
91Hayeemasae N., Ismail H. and Rashid A. (2011). The influence of recycled poly(ethylene terephthalate) powder on fatigue life, thermal stability, and morphology of Halloysite Nanotubes (HNTs) and precipitated silica filled natural rubber composites. Key Engineering Materials, 471-472, 628-633.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.628
92Hayeemasae N., Ismail H. and Rashid A. (2011). The partial replacement of Halloysite Nanotubes (HNTs) and precipitated silica by recycled poly(ethylene terephthalate) powder on cure behavior tensile properties and morphology of natural rubber composites. Key Engineering Materials, 471-472, 622-627.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.622
รวม Scopus 92 รายการ 611 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: scitech@g.psu.ac.th