SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)

กรอง
ช่วงปี
ถึง
ตาราง ผลงานตีพิมพ์ Scopus หน่วยงาน เทคโนโลยียางฯ
ลำดับรายละเอียดผลงาน
1Masa A., Worlee A., Jehsoh N. and Hayeemasae N. (2025). A flower-like morphology in natural rubber latex film binder: Mechanical and antifungal characteristics. Journal of Vinyl and Additive Technology
Cited: 0 doi: https://doi.org/10.1002/vnl.22218
2Masa A., Jehsoh N. and Hayeemasae N. (2025). Application of natural rubber latex foam as an effective oil absorbent. Polimeros, 35(1)
Cited: 0 doi: https://doi.org/10.1590/0104-1428.20240027
3Masa A., Jehsoh N. and Hayeemasae N. (2025). Dye Adsorbent from Natural Rubber Latex Foam: Efficiency and Post-Utilization. Polymers, 17(1)
Cited: 0 doi: https://doi.org/10.3390/polym17010106
4Hayeemasae N., Soontaranon S., Zakaria Z., Mohamad Rasidi M. and Masa A. (2025). Effect of styrene content on structure and properties of vulcanizates from natural rubber grafted with polystyrene. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606251321527
5Surya I. and Hayeemasae N. (2025). Increased Rubber-Filler Interaction of the Compound of Natural Rubber-Silica by Aminopropyltriethoxy Silane. AIP Conference Proceedings, 3166(1)
Cited: 0 doi: https://doi.org/10.1063/5.0236984
6Hayeemasae N., Worlee A. and Masa A. (2025). Influence Of Calcium Carbonate Content On Properties Of Natural Rubber And Acrylic Blends For Coating Applications. Journal of Applied Science and Engineering (Taiwan), 28(2), 411-419.
Cited: 0 doi: https://doi.org/10.6180/jase.202502_28(2).0019
7Jarnthong M., , Masa A., Thongnuanchan B., Saito H., Soontaranon S., Sakai T. and Lopattananon N. (2025). Nanocellulose reinforcement of epoxidized natural rubber: Enhancing strain-induced crystallization for high-performance bio-composites. Polymer Composites
Cited: 0 doi: https://doi.org/10.1002/pc.29594
8Srichai K., , Suwan A., Chaisit T., Saetung A. and Saetung N. (2025). New biofilm composite materials from natural rubber and cellulose nanocrystals from rubber seed shell: Preliminary study on cytotoxicity properties. Progress in Organic Coatings, 204
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2025.109250
9Hayeemasae N., Saiwari S., Soontaranon S., Fathurrohman M. and Masa A. (2025). Potential for using sepiolite as dispersing agent in phenolic resin crosslinked natural rubber/silica composites. Express Polymer Letters, 19(3), 339-349.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2025.24
10Kaesaman A., Chuaysakul R. and Nakason C. (2025). Preparation of sustainable creaming agents for eco-friendly processing of natural rubber latex concentrates. Journal of Dispersion Science and Technology
Cited: 0 doi: https://doi.org/10.1080/01932691.2025.2502877
11Surya I., Sadanta R., Sukeksi L., Sidabutar R. and Hayeemasae N. (2025). Processing characteristics and mechanical properties of styrene butadiene rubber filled with varying amounts of silica. IOP Conference Series: Earth and Environmental Science, 1445(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1445/1/012070
12Sarkar S., Aiswarya S., Salaeh S., Hirschberg V. and Banerjee S. (2025). Self-healing and shape memory functions in elastomers: Recent advances and future prospectives. Polymer Engineering and Science, 65(4), 1620-1654.
Cited: 0 doi: https://doi.org/10.1002/pen.27092
13Sarkar S., Aiswarya S., Salaeh S., Hirschberg V. and Banerjee S. (2025). Self-healing and shape memory functions in elastomers: Recent advances and future prospectives. Polymer Engineering and Science
Cited: 0 doi: https://doi.org/10.1002/pen.27092
14Kraibut A., Kaewsakul W., Saiwari S., Sahakaro K., Noordermeer J. and Dierkes W. (2025). Suppressed degradation by stabilizers during mixing of silica/silane-filled natural rubber. Polymer Degradation and Stability, 233
Cited: 0 doi: https://doi.org/10.1016/j.polymdegradstab.2024.111164
15Suwan A., Sukhawipat N., Saetung A., Saetung N. and Pasetto P. (2025). Synthesis of silane-functionalized polyols from natural rubber by thiol-ene click reaction and preparation of waterborne polyurethane films. Progress in Organic Coatings, 201
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2025.109109
16Chaipo S., Itsaradamkoeng P., Salaeh S., Wongtimnoi K., Putson C. and Zhang J. (2025). Tailored chain interaction of binary and ternary PVDF-HFP and PVDF-TrFE-CTFE / graphene nanoplatelets on dielectric properties and charge density capability. Polymer, 326
Cited: 0 doi: https://doi.org/10.1016/j.polymer.2025.128339
17Surya I. and Hayeemasae N. (2025). The Effect of Aptes-Silane on Tensile and Ageing Properties of the Compound of Natural Rubber-Silica. AIP Conference Proceedings, 3166(1)
Cited: 0 doi: https://doi.org/10.1063/5.0236981
18Surya I., Mukhlishien and Hayeemasae N. (2025). The Potency of Fatty Alcohol Compounds to Improve the Silica Dispersion in the Compound of Natural Rubber with Silica. AIP Conference Proceedings, 3166(1)
Cited: 0 doi: https://doi.org/10.1063/5.0236986
19Nakason C., Nuthong P. and Kaesaman A. (2025). Transforming waste cooking oil into zinc soap: a sustainable approach to multifunctional additives for enhancing natural rubber composites. Journal of Polymer Research, 32(5)
Cited: 0 doi: https://doi.org/10.1007/s10965-025-04392-2
20Sukhawipat N., Kongprabat T., Uthaipan N., Saetung A. and Saetung N. (2024). A new green rigid polyurethane foam based on modified palm oil: Preliminary study of their potential for marine buoy applications. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.56477
21Salaeh S., Thitithammawong A. and Banerjee S. (2024). A new strategy applying ternary blends of modified natural rubber with fluoroplastic and fluorocarbon elastomer for high-performance thermoplastic vulcanizate. Polymer Testing, 140
Cited: 0 doi: https://doi.org/10.1016/j.polymertesting.2024.108594
22Bunsanong A., Thongnuanchan B., Ninjan R., Salaeh S., Lopattananon N. and Masa A. (2024). Accelerator and zinc-free prevulcanized latex based on natural rubber-bearing benzyl chloride groups. Express Polymer Letters, 18(2), 229-242.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.16
23Mohamad Aini N., Nadras O., Hazwan Hussin M., Sahakaro K. and Hayeemasae N. (2024). Application of lignin in rubber composites and future trends. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 257-283.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00014-9
24Hayeemasae N. and Masa A. (2024). Characterization and properties of sepiolite-filled natural rubber composites. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 135-147.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00006-X
25Hayeemasae N., Soontaranon S. and Masa A. (2024). Comparative Investigation of Nano-Sized Silica and Micrometer-Sized Calcium Carbonate on Structure and Properties of Natural Rubber Composites. Polymers, 16(8)
Cited: 0 doi: https://doi.org/10.3390/polym16081051
26Kaesaman A., Chiponbarn S. and Nakason C. (2024). Curing, rheological, mechanical, and flame retardant properties of high thermal-resistant dibutyl phosphate-bound natural rubber. Express Polymer Letters, 18(6), 623-637.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.46
27Habri H., Shahrizan A., Azmi I., Hambali N., Shamjuddin A., Salaeh S. and Jalil M. (2024). Degradation autocatalytic epoxidation of oleic acid derived from palm oil via in situ performic acid mechanism. Environmental Progress and Sustainable Energy
Cited: 0 doi: https://doi.org/10.1002/ep.14498
28Kraibut A., Kaewsakul W., Sahakaro K., Saiwari S., Noordermeer J. and Dierkes W. (2024). Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds. Materials, 17(2)
Cited: 0 doi: https://doi.org/10.3390/ma17020341
29Matchawet S., Dasaesamoh A., Hayeemasae N., Worlee A. and Sookyung U. (2024). Enhancing the performance of waste-paper particleboard using silica and aluminum hydroxide fillers. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606241243114
30Sarengan N., Salaeh S., Sagadevan S., Imam S., Kusumawardani C. and Mohd Kaus N. (2024). Exploring the n–p type zinc oxide/copper oxide nanocomposite under Xenon light irradiation with enhanced photocatalytic activities for norfloxacin and methyl orange. Journal of Materials Science: Materials in Electronics, 35(32)
Cited: 0 doi: https://doi.org/10.1007/s10854-024-13748-1
31Majid N., Rehman A., Mohd Sani N., Hayeemasae N., Ismail H., Masraff M. and Raa Khimi S. (2024). Facial fabrication of self-healing natural rubber foam based on zinc thiolate ionic networks. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.55280
32Kaesaman A., Intharapat P. and Nakason C. (2024). Flame Retardancy and Properties of Thermoplastic Vulcanizates from Dibutyl Phosphate-Bound Natural Rubber/Ethylene Vinyl Acetate Blends. Polymer-Plastics Technology and Materials
Cited: 0 doi: https://doi.org/10.1080/25740881.2024.2393781
33Ninjan R., Thongnuanchan B., Lopattananon N., Salaeh S., Tongnuanchan P. and Buangam P. (2024). Heat-sealable paper fabricated using a latex coating based on modified natural rubber filled with gelatin. Express Polymer Letters, 18(11), 1077-1093.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.83
34Kaesaman A., Kaewchuen S. and Nakason C. (2024). Implementing eco-friendly creaming agents to address coagulation issues and minimize acid consumption in skim natural rubber latex processing. Industrial Crops and Products, 222
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2024.119499
35Worlee A., Hayeemasae N. and Masa A. (2024). Optimized titanium dioxide loading for properties of natural rubber latex and acrylic emulsion blends. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443241247201
36Jarnthong M., Lopattananon N., Li Y., Yu H., Wang R., Wang Y., Liu H., Liao L. and Peng Z. (2024). Performance of Moringa Oil as an Effective Bioplasticizer on Static and Dynamic Mechanical Properties of Natural Rubber Vulcanizates. ACS Sustainable Chemistry and Engineering
Cited: 0 doi: https://doi.org/10.1021/acssuschemeng.4c01672
37Hayeemasae N. (2024). Preparation and properties of halloysite nanotubes-filled epoxidized natural rubber composites. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 11-29.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00003-4
38Hayeemasae N., Soontaranon S. and Masa A. (2024). Structure – property relationships of different natural rubber grades. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606241243113
39Nakason C., Chewchanwuttiwong S., Hathak C., Petsiri S. and Kaesaman A. (2024). Sustainable multi-functional additives: Zinc soaps from vegetable oil and fatty acids in natural rubber compounds. Industrial Crops and Products, 217
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2024.118827
40Daud N., Rithwan A., Sagadevan S., Salaeh S., Adnan R., Imam S. and Mohd Kaus N. (2024). Synergistic effect from integrated palm oil biomass biochar enhanced nanoplate bismuth oxybromide for fluoroquinolone photodegradation under xenon light irradiation. Journal of Materials Science: Materials in Electronics, 35(24)
Cited: 0 doi: https://doi.org/10.1007/s10854-024-13361-2
41Mekarat S., Suwan A., Chaisit T., Thongseenuch S., Saetung A. and Saetung N. (2024). Synthesis of palm oil-based bio-polyol by thiol-ene reaction: Preliminary study of its potential as cationic waterborne polyurethane for coating application. Progress in Organic Coatings, 194
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2024.108586
42Surya I., Nasution K., Sembiring A. and Hayeemasae N. (2024). The Effect of Silica Concentration on the Absorption Properties of Silica-Based Ceramic Membrane. Journal of Physics: Conference Series, 2733(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2733/1/012015
43Nakason C., Manleh C., Lopattananon N. and Kaesaman A. (2024). The influence of crosslink characteristics on key properties of dynamically cured NR/PP blends. Express Polymer Letters, 18(5), 487-503.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.36
44Surya I., Sembiring A., Nasution K. and Hayeemasae N. (2024). The porosity and morphology properties of ceramic membrane. Journal of Physics: Conference Series, 2733(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2733/1/012014
45Ninjan R., Thongnuanchan B., Lopattananon N., Salaeh S. and Thitithammawong A. (2024). Thermally assisted healable film based on modified natural rubber-bearing benzyl chloride functionality. Express Polymer Letters, 18(7), 742-759.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.55
46Saiwari S., Sripornsawat B. and Nakason C. (2024). Transformation of truck tire rubber waste into thermoplastic vulcanizates: influence of vulcanization systems and compatibilizers in copolyester blends. Polymer Bulletin
Cited: 0 doi: https://doi.org/10.1007/s00289-024-05572-8
47Le H., Hoang T., Haider S., Subhradeep M., Reuter U., Dhakal K., Adhikari R., Reincke K., Salaeh S. and Wie?ner S. (2023). A new testing strategy based on the wetting concept for characterizing rubber-filler interaction in rubber compounds and its application to the study of the influence of epoxy groups and non-rubber components on rubber-filler interaction in natural rubber compounds. Express Polymer Letters, 17(5), 527-545.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.39
48Tsupphayakorn-Aek P., Suwan A., Chaisit T., Tulyapitak T., Phinyocheep P., Pilard J., Saetung N. and Saetung A. (2023). A new UV-curable biodegradable waterborne polyurethane-acrylate based on natural rubber blended with cassava starch. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53787
49Mohd Sani N., Majid N., Rehman A., Hayeemasae N., Radhakrishnan S., Kulkarni M. and Khimi R. (2023). A review of the recent development in self-healing rubbers and their quantification methods. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606231200952
50Masa A., Jehsoh N., Dueramae S. and Hayeemasae N. (2023). Boosting the Antibacterial Performance of Natural Rubber Latex Foam by Introducing Silver-Doped Zinc Oxide. Polymers, 15(4)
Cited: 0 doi: https://doi.org/10.3390/polym15041040
51Wahab N., Samsudin D., Jamaluddin S., Ahmad Z., Mustafa M., Sarip M., Hayeemasae N. and Saiwari S. (2023). Characterization and Tensile Properties of Self-healing Chitin-Devulcanized Ethylene Propylene Rubber (EPDM)—Waste Natural Rubber Blend. Springer Proceedings in Materials, 24, 265-277.
Cited: 0 doi: https://doi.org/10.1007/978-981-99-2015-0_21
52Hayeemasae N., Salleh S. and Ismail H. (2023). Chloroprene rubber waste as blend component with natural rubber, epoxidized natural rubber, and styrene butadiene rubber. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 271-289.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_13
53Hayeemasae N. and Ismail H. (2023). Comparative studies of natural rubber/virgin ethylene propylene diene rubber and natural rubber/recycled ethylene propylene diene rubber and natural rubber/blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 179-207.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_9
54Hayeemasae N. and Ismail H. (2023). Compatibilization of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 227-254.
Cited: 1 doi: https://doi.org/10.1007/978-3-031-37046-5_11
55Kraibut A., Saiwari S., Kaewsakul W., Noordermeer J., Sahakaro K. and Dierkes W. (2023). Dynamic Response and Molecular Chain Modifications Associated with Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds. Polymers, 15(1)
Cited: 0 doi: https://doi.org/10.3390/polym15010160
56Hayeemasae N., Salleh S. and Ismail H. (2023). Effect of metal oxide content on the mechanical and thermal properties of natural rubber/recycled chloroprene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 255-269.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_12
57Mohd Sani N., Thajudin N., Hayeemasae N. and Raa Khimi S. (2023). Effect of Zn<sup>2+</sup> salt bonding on thermo-reversible self-healing natural rubber. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53924
58Salprima Y., Banon C., Falahudin A., Reagen M., Mohd Kaus N. and Salaeh S. (2023). Fabrication of Silver-Silica Composite using the Carbo-thermal Degradation of Oil Palm Leaves for the Reduction of p-nitrophenol. International Journal of Technology, 14(2), 290-299.
Cited: 0 doi: https://doi.org/10.14716/ijtech.v14i2.5608
59Jaratrotkamjorn R., Hayeemasae N., Zakaria Z. and Masa A. (2023). Influence of acid concentration on thermomechanical, tensile and thermal properties of cyclized natural rubber. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443231173827
60Kaesaman A., Romin R. and Nakason C. (2023). Influence of epoxide content and blend ratios on strength and damping properties of thermoplastic vulcanizates based on epoxidized natural rubber and poly(ether-block-amide) copolymer blends. Express Polymer Letters, 17(10), 1056-1069.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.79
61Kaesaman A., Lamleah S. and Nakason C. (2023). Influence of vulcanization system on curing, mechanical, dynamic and morphological properties of maleated natural rubber and its thermoplastic vulcanizate with thermoplastic copolyester elastomer. Express Polymer Letters, 17(7), 675-689.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.50
62Masa A., Jehsoh N., Saiwari S., Dueramae S. and Hayeemasae N. (2023). Microwave-assisted silver-doped zinc oxide towards antibacterial and mechanical performances of natural rubber latex film. Materials Today Communications, 34
Cited: 0 doi: https://doi.org/10.1016/j.mtcomm.2023.105475
63Suwan A., Srichai K., Sukhawipat N., Pasetto P., Saetung A. and Saetung N. (2023). New waterborne polyurethane/silica hybrid dispersions based on natural rubber and prepared by sol-gel process: Effects of amino alkoxy-silane and nano-silica contents on dispersion stability and films properties. Progress in Organic Coatings, 184
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2023.107835
64Surya I., Marpongahtun n. and Hayeemasae N. (2023). Oleamide as palm-oil based substance for silica-loaded styrene butadiene rubber compound: The cure and crosslinks behaviors. IOP Conference Series: Earth and Environmental Science, 1241(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1241/1/012096
65Hayeemasae N. and Ismail H. (2023). Optimization of accelerators on the properties of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 209-226.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_10
66Mohamed N., Nadras O., Raa Khimi S. and Hayeemasae N. (2023). Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iranian Polymer Journal (English Edition)
Cited: 0 doi: https://doi.org/10.1007/s13726-023-01203-7
67Masa A., Songkhla, Worlee A., Pattani, Matchawet S., Yala and Hayeemasae N. (2023). Property Enhancement of NR/ Halloysite Nanotubes Composites by Introducing dual Modification. KGK Kautschuk Gummi Kunststoffe, 76(1), 54-60.
Cited: 0
68Kassim M., Mohd Kaus N., Imam S., Sagadevan S. and Salaeh S. (2023). Rapid and facile chemical synthesis of Fe<inf>3</inf>O<inf>4</inf>/biochar nanocomposite for the adsorptive removal of fluoroquinolones from aqueous solution. Inorganic Chemistry Communications, 156
Cited: 0 doi: https://doi.org/10.1016/j.inoche.2023.111156
69Wongvasana B., Thongnuanchan B., Masa A., Saito H., Sakai T. and Lopattananon N. (2023). Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites. Polymers, 15(5)
Cited: 0 doi: https://doi.org/10.3390/polym15051274
70Razuki A., Haida Mohd Kaus N., Sagadevann S., Salaeh S., Lokman Ibrahim M. and Mustaffa Al Bakri Abdullah M. (2023). Revolutionizing biodiesel production: A breakthrough synthesis and characterization of bismuth ferrite nanocatalysts for transesterification of palm and waste cooking oil. Fuel, 346
Cited: 0 doi: https://doi.org/10.1016/j.fuel.2023.128413
71Kao-Ian P., Banerjee S., Yudha S S. and Salaeh S. (2023). Strengthened Poly(vinylidene fluoride)/Epoxidized Natural Rubber Blend by a Reactive Compatibilizer Based on an Amino Acid-Modified Fluorocarbon Elastomer. Industrial and Engineering Chemistry Research
Cited: 0 doi: https://doi.org/10.1021/acs.iecr.3c04672
72Wongvasana B., Thongnuanchan B., Masa A., Saito H., Sakai T. and Lopattananon N. (2023). Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers. Polymers, 15(21)
Cited: 0 doi: https://doi.org/10.3390/polym15214223
73Hayeemasae N., Viet C., Masa A., Raa Khimi S., Ismail H. and Surya I. (2023). The Use of Kenaf Fibre as a Natural Anti-Degradant in Recycled High-Density Polyethylene and Natural Rubber-Based Thermoplastic Elastomers. Polymers, 15(5)
Cited: 0 doi: https://doi.org/10.3390/polym15051237
74Salaeh S., Thongnuanchan B., Bueraheng Y., Das A., Mohd Kaus N. and Wiessner S. (2023). The utilization of glycerol and xylitol in bio-based vitrimer-like elastomer: Toward more environmentally friendly recyclable and thermally healable crosslinked rubber. European Polymer Journal, 198
Cited: 0 doi: https://doi.org/10.1016/j.eurpolymj.2023.112422
75Sripornsawat B., Georgopoulou A., Tulaphol S., Thitithammawong A., Johns J., Nakaramontri Y. and Clemens F. (2023). Use of modified deep eutectic solvent as an additional chemical in a flexible conductive natural rubber sensor for motion analysis. Express Polymer Letters, 17(1), 69-89.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.6
76Tsupphayakorn-Aek P., Suwan A., Tulyapitak T., Saetung N. and Saetung A. (2022). A novel UV-curable waterborne polyurethane-acrylate coating based on green polyol from hydroxyl telechelic natural rubber. Progress in Organic Coatings, 163
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2021.106585
77Ninjan R., Thongnuanchan B., Lopattananon N. and Nakason C. (2022). Anti-rust primer for steel based on natural rubber bearing methacrylic functionality. Express Polymer Letters, 16(6), 573-590.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2022.43
78Baru F., Saiwari S. and Hayeemasae N. (2022). Classification of natural rubber foam grades by optimising the azodicarbonamide content. Polimeros, 32(2)
Cited: 0 doi: https://doi.org/10.1590/0104-1428.20210111
79Wongvasana B., Thongnuanchan B., Masa A., Saito H., Sakai T. and Lopattananon N. (2022). Comparative Structure–Property Relationship between Nanoclay and Cellulose Nanofiber Reinforced Natural Rubber Nanocomposites. Polymers, 14(18)
Cited: 0 doi: https://doi.org/10.3390/polym14183747
80Hayeemasae N., Adair A. and Masa A. (2022). COMPARATIVE STUDY ON VISCOSITIES, STRESS RELAXATION, CURING AND MECHANICAL PROPERTIES OF SEPIOLITE AND SILICA FILLED NATURAL RUBBER COMPOSITES. Malaysian Journal of Analytical Sciences, 26(2), 176-190.
Cited: 0
81Salaeh S. and Kao-Ian P. (2022). Conductive epoxidized natural rubber nanocomposite with mechanical and electrical performance boosted by hybrid network structures. Polymer Testing, 108
Cited: 1 doi: https://doi.org/10.1016/j.polymertesting.2022.107493
82Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Effect of hybrid carbon black/lignin on rheological, mechanical and thermal stability properties of NR/BR composites. Plastics, Rubber and Composites, 51(6), 293-305.
Cited: 1 doi: https://doi.org/10.1080/14658011.2021.1981718
83Uthaipan N., Kongprabat T., Suwan A., Chaisit T., Saetung A. and Saetung N. (2022). Effect of Surface Treatment of Carbon Black Filled Insulation Foam Based on Modified Recycled Palm Oil. Journal of Polymers and the Environment
Cited: 0 doi: https://doi.org/10.1007/s10924-022-02533-y
84Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2022). EFFECT OF VULCANIZATION SYSTEMS AND CROSSLINK DENSITY ON TENSILE PROPERTIES AND NETWORK STRUCTURES OF NATURAL RUBBER. Jurnal Teknologi, 84(6), 181-187.
Cited: 0 doi: https://doi.org/10.11113/jurnalteknologi.v84.16467
85Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties. Industrial Crops and Products, 185
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2022.115167
86Walong A., Thongnuanchan B., Uthaipan N., Sakai T. and Lopattananon N. (2022). Enhancing cellular structure, mechanical properties, thermal stability and flame retardation of EVA/NR blend nanocomposite foams by silicon dioxide-based flame retardant. Progress in Rubber, Plastics and Recycling Technology, 38(1), 70-88.
Cited: 0 doi: https://doi.org/10.1177/14777606211042028
87Rushdan A., Sapuan S., Bayraktar E., Hassan S., Hayeemasae N., Atikah M. and Shaker K. (2022). Fibre-Reinforced Polymer Composites: Mechanical Properties and Applications. Polymers, 14(18)
Cited: 0 doi: https://doi.org/10.3390/polym14183732
88Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Mechanical and other related properties. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 111-134.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-6
89Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Morphology and crystallization of the composites. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 135-158.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-7
90Aiswarya S., Awasthi P., Shivaprakash N., Cooke A., Salaeh S. and Banerjee S. (2022). High-temperature thermoplastic elastomeric materials by electron beam treatment - Challenges and opportunities. Radiation Technologies and Applications in Materials Science, 257-286.
Cited: 1 doi: https://doi.org/10.1201/9781003321910-10
91Kaesaman A., Boontawee H., Chewchanwuttiwong S. and Nakason C. (2022). Influence of benzyl esters of vegetable oils on curing, mechanical and dynamic properties of silica filled natural rubber and styrene-butadiene rubber compounds. Express Polymer Letters, 16(5), 540-556.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2022.40
92Hayeemasae N., Saiwari S., Soontaranon S. and Masa A. (2022). Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Polymers, 14(13)
Cited: 0 doi: https://doi.org/10.3390/polym14132713
93Nakason C., Pichaiyut S., Vennemann N. and Kaesaman A. (2022). Influence of processing oil on properties of dynamically cured epoxidized natural rubber and thermoplastic polyurethane blends. Polymer Bulletin
Cited: 0 doi: https://doi.org/10.1007/s00289-022-04430-9
94Hayeemasae N., Adair A., Rasidi M., Jitsopin P. and Masa A. (2022). Influence of Sepiolite Addition Methods and Contents on Physical Properties of Natural Rubber Composites. Science and Technology Indonesia, 7(2), 140-148.
Cited: 0 doi: https://doi.org/10.26554/sti.2022.7.2.140-148
95Ridho M., Agustiany E., Rahmi Dn M., Madyaratri E., Ghozali M., Restu W., Falah F., Rahandi Lubis M., Syamani F., Nurhamiyah Y., Hidayati S., Sohail A., Karungamye P., Nawawi D., Iswanto A., Othman N., Mohamad Aini N., Hussin M., Sahakaro K., Hayeemasae N., Ali M. and Fatriasari W. (2022). Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022
Cited: 0 doi: https://doi.org/10.1155/2022/1363481
96Thitithammawong A., Saiwari S., Salaeh S. and Hayeemasae N. (2022). Potent Application of Scrap from the Modified Natural Rubber Production as Oil Absorbent. Polymers, 14(23)
Cited: 0 doi: https://doi.org/10.3390/polym14235066
97Chew J., Wahab M., Zulkeply N., Razak M. and Hayeemasae N. (2022). Preparation and characterization of NE-7150 and NE-7170 silicone rubber blend with different ratios and curing agents loading. AIP Conference Proceedings, 2496
Cited: 0 doi: https://doi.org/10.1063/5.0091399
98Saiwari S., Nobnop S., Bueraheng Y., Thitithammawong A., Hayeemasae N. and Salaeh S. (2022). Segregated MWCNT Structure Formation in Conductive Rubber Nanocomposites by Circular Recycling of Rubber Waste. ACS Applied Polymer Materials
Cited: 0 doi: https://doi.org/10.1021/acsapm.2c01203
99Saiwari S., Hayeemasae N., Soontaranon S., Kalkornsurapranee E., Jaratrotkamjorn R. and Masa A. (2022). Structure-Property relationships in natural rubber representing several clonal varieties of Hevea Brasiliensis. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606221127372
100Salaeh S., Nobnop S., Thongnuanchan B., Das A. and Wie?ner S. (2022). Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). Polymer, 262
Cited: 0 doi: https://doi.org/10.1016/j.polymer.2022.125444
101Ajinsamajan A., Rungvichaniwat A. and Saetung A. (2022). Utilization of silicon dioxide powder from industrial wastes as novel filler in rubber isolator application. Journal of Metals, Materials and Minerals, 32(1), 93-100.
Cited: 0 doi: https://doi.org/10.55713/jmmm.v32i1.1205
102Hayeemasae N. and Ismail H. (2021). Application of Silane-treated Tea Waste Powder as a Potential Filler for Natural Rubber Composites. BioResources, 16(1), 1230-1244.
Cited: 3 doi: https://doi.org/10.15376/biores.16.1.1230-1244
103Sukhawipat N., Suwan A., Kalkornsurapranee E., Saetung A. and Saetung N. (2021). Cationic waterborne polyurethane–chitosan based on natural rubber as new green antimicrobial coating. Progress in Organic Coatings, 161
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2021.106497
104Salaeh S., Das A. and Wie?ner S. (2021). Design and fabrication of thermoplastic elastomer with ionic network: A strategy for good performance and shape memory capability. Polymer, 223
Cited: 4 doi: https://doi.org/10.1016/j.polymer.2021.123699
105Hayeemasae N., Waesateh K., Saiwari S., Ismail H. and Othman N. (2021). Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidized natural rubber. Polymer Bulletin, 78(12), 7147-7166.
Cited: 4 doi: https://doi.org/10.1007/s00289-020-03461-4
106Masa A., Hayeemasae N., Soontaranon S., Pisal M. and Rasidi M. (2021). Effect of stretching rate on tensile response and crystallization behavior of crosslinked natural rubber. Malaysian Journal of Fundamental and Applied Sciences, 17(3), 217-225.
Cited: 0 doi: https://doi.org/10.11113/MJFAS.V17N3.2039
107Sattayanurak S., Sahakaro K., Kaewsakul W., Reuvekamp L. and Blume A. (2021). Elucidating the role of clay-modifier on the properties of silica-and silica/nanoclay-reinforced natural rubber tire compounds. Express Polymer Letters, 15(7), 666-684.
Cited: 1 doi: https://doi.org/10.3144/EXPRESSPOLYMLETT.2021.56
108Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2021). Enhancing performance of silica-reinforced natural rubber tire tread compounds byapplying organoclayas secondary filler. Rubber Chemistry and Technology, 94(1), 121-144.
Cited: 2 doi: https://doi.org/10.5254/rct.20.80373
109Hayeemasae N., Soontaranon S., Rasidi M. and Masa A. (2021). ensile and structural properties of natural rubber vulcanizates with different mastication times. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09120
110Nontasak W., Thongnuanchan B., Ninjan R., Lopattananon N., Wannavilai P. and Nakason C. (2021). Fire-retardant wood coating based on natural rubber bearing methacrylic functionality. Journal of Polymer Engineering, 41(1), 44-53.
Cited: 4 doi: https://doi.org/10.1515/polyeng-2020-0092
111Chueangchayaphan N., Nithi-Uthai N., Techakittiroj K. and Manuspiya H. (2021). In-situ dielectric cure monitoring as a method of measuring the influence of cure temperature on natural rubber vulcanization. Polymer Bulletin, 78(6), 3169-3182.
Cited: 3 doi: https://doi.org/10.1007/s00289-020-03269-2
112Jitsopin P., Masa A., Hayeemasae N. and Rasidi M. (2021). Influence of Preparation Method on Properties of Natural Rubber/Sepiolite Composites. Journal of Physics: Conference Series, 2129(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2129/1/012075
113Walong A., Thongnuanchan B., Sakai T. and Lopattananon N. (2021). Influence of silicon dioxide addition and processing methods on structure, thermal stability and flame retardancy of EVA/NR blend nanocomposite foams. Progress in Rubber, Plastics and Recycling Technology, 37(1), 49-65.
Cited: 3 doi: https://doi.org/10.1177/1477760620953437
114Jehsoh N., Surya I., Sahakaro K., Ismail H. and Hayeemasae N. (2021). Modified palm stearin compatibilized natural rubber/halloysite nanotubes composites: Reinforcement versus strain-induced crystallization. Journal of Elastomers and Plastics, 53(3), 210-227.
Cited: 3 doi: https://doi.org/10.1177/0095244320928573
115Kaewsakul W., Noordermeer J., Sahakaro K., Sengloyluan K., Saramolee P., Dierkes W. and Blume A. (2021). Natural rubber and epoxidized natural rubber in combination with silica fillers for low rolling resistance tires. Chemistry, Manufacture and Applications of Natural Rubber, 247-316.
Cited: 0 doi: https://doi.org/10.1016/B978-0-12-818843-9.00009-6
116Sripornsawat B., Thitithammawong A., Tulaphol S., Johns J. and Nakaramontri Y. (2021). Positive Synergistic Effects on Vulcanization, Mechanical and Electrical Properties of Using Deep Eutectic Solvent in Natural Rubber Vulcanizates. Polymer Testing, 96
Cited: 0 doi: https://doi.org/10.1016/j.polymertesting.2021.107071
117Surya I., Waesateh K., Saiwari S., Ismail H., Othman N. and Hayeemasae N. (2021). Potency of urea-treated halloysite nanotubes for the simultaneous boosting of mechanical properties and crystallization of epoxidized natural rubber composites. Polymers, 13(18)
Cited: 2 doi: https://doi.org/10.3390/polym13183068
118Hayeemasae N. and Ismail H. (2021). Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09720
119Dierkes W. and Saiwari S. (2021). Regeneration and devulcanization. Tire Waste and Recycling, 97-144.
Cited: 2 doi: https://doi.org/10.1016/B978-0-12-820685-0.00006-5
120Ninjan R., Thongnuanchan B., Lopattananon N., Thitithammawong A. and Nakason C. (2021). Rubber-to-steel adhesives based on natural rubber grafted with poly(acetoacetoxyethyl methacrylate). Journal of Polymer Engineering, 41(3), 192-201.
Cited: 1 doi: https://doi.org/10.1515/polyeng-2020-0156
121Surya I., Waesateh K., Masa A. and Hayeemasae N. (2021). Selectively etched halloysite nanotubes as performance booster of epoxidized natural rubber composites. Polymers, 13(20)
Cited: 3 doi: https://doi.org/10.3390/polym13203536
122Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2021). The effect of mastication time on the physical properties and structure of natural rubber. Journal of Elastomers and Plastics, 53(3), 228-240.
Cited: 1 doi: https://doi.org/10.1177/0095244320928566
123Jarnthong M., Peng Z., Lopattananon N. and Nakason C. (2021). The influence of pre-compounding techniques and surface modification of nano-silica on the properties of thermoplastic natural rubber. Express Polymer Letters, 15(12), 1135-1147.
Cited: 2 doi: https://doi.org/10.3144/expresspolymlett.2021.92
124Salaeh S., Das A., Wie?ner S. and Stapor M. (2021). Vitrimer-like material based on a biorenewable elastomer crosslinked with a dimeric fatty acid. European Polymer Journal, 151
Cited: 5 doi: https://doi.org/10.1016/j.eurpolymj.2021.110452
125Sukhawipat N., Raksanak W., Kalkornsurapranee E., Saetung A. and Saetung N. (2020). A new hybrid waterborne polyurethane coating synthesized from natural rubber and rubber seed oil with grafted acrylate. Progress in Organic Coatings, 141
Cited: 11 doi: https://doi.org/10.1016/j.porgcoat.2020.105554
126Sukhawipat N., Saetung N., Pasetto P., Pilard J., Bistac S. and Saetung A. (2020). A novel high adhesion cationic waterborne polyurethane for green coating applications. Progress in Organic Coatings, 148
Cited: 9 doi: https://doi.org/10.1016/j.porgcoat.2020.105854
127Surya I., Masa A., Ismail H. and Hayeemasae N. (2020). Acid-treated halloysite nanotubes filled natural rubber composites. IOP Conference Series: Materials Science and Engineering, 801(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/801/1/012087
128Worlee A., Homdong N. and Hayeemasae N. (2020). Application of polymer blend based on natural rubber latex and acrylic resin as a binder for wall paints. IOP Conference Series: Materials Science and Engineering, 773(1)
Cited: 1 doi: https://doi.org/10.1088/1757-899X/773/1/012032
129Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2020). BETTER BALANCE OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUND PROPERTIES BY THE USE OF MONTMORILLONITE WITH OPTIMUM SURFACE MODIFIER CONTENT. Rubber Chemistry and Technology, 93(3), 548-566.
Cited: 6 doi: https://doi.org/10.5254/rct.20.80407
130Noordermeer J., Dierkes W., Blume A., van Hoek H., Reuvekamp L., Dijkhuis K. and Saiwari S. (2020). Cradle-to-cradle devulcanization options for various elastomer types. Rubber World, 262(5), 20-28.
Cited: 2
131Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. International Journal of Biological Macromolecules, 154, 1255-1264.
Cited: 4 doi: https://doi.org/10.1016/j.ijbiomac.2019.10.280
132Sukhawipat N., Saetung N., Pilard J., Bistac S. and Saetung A. (2020). Effects of molecular weight of hydroxyl telechelic natural rubber on novel cationic waterborne polyurethane: A new approach to water-based adhesives for leather applications. International Journal of Adhesion and Adhesives, 99
Cited: 8 doi: https://doi.org/10.1016/j.ijadhadh.2020.102593
133Salaeh S., Das A., St?ckelhuber K. and Wie?ner S. (2020). Fabrication of a strain sensor from a thermoplastic vulcanizate with an embedded interconnected conducting filler network. Composites Part A: Applied Science and Manufacturing, 130
Cited: 20 doi: https://doi.org/10.1016/j.compositesa.2020.105763
134Sawangpet K., Walong A., Thongnuanchan B., Kaesaman A., Sakai T. and Lopattananon N. (2020). Foaming and Physical Properties, Flame Retardancy, and Combustibility of Polyethylene Octene Foams Modified by Natural Rubber and Expandable Graphite. Journal of Vinyl and Additive Technology, 26(4), 423-433.
Cited: 1 doi: https://doi.org/10.1002/vnl.21757
135Salaeh S., Thitithammawong A. and Salae A. (2020). Highly enhanced electrical and mechanical properties of methyl methacrylate modified natural rubber filled with multiwalled carbon nanotubes. Polymer Testing, 85
Cited: 11 doi: https://doi.org/10.1016/j.polymertesting.2020.106417
136Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2020). Improvement of silica-reinforced natural rubber tire tread compounds by joint hybridization with small amounts of secondary fillers and polymers. Rubber Chemistry and Technology, 93(4), 652-671.
Cited: 2 doi: https://doi.org/10.5254/RCT.20.79962
137Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Influence of hydroxymethylated lignin on mechanical properties and payne effect of NR/BR compounds. Malaysian Journal of Analytical Sciences, 24(5), 810-819.
Cited: 0
138Masa A., Soontaranon S. and Hayeemasae N. (2020). Influence of Sulfur/Accelerator Ratio on Tensile Properties and Structural Inhomogeneity of Natural Rubber. Polymer (Korea), 44(4), 519-526.
Cited: 2 doi: https://doi.org/10.7317/pk.2020.44.4.519
139Katueangngan K., Tulyapitak T., Saetung A., Soontaranon S. and Nithi-Uthai N. (2020). Interfacial Interactions of Silica and Natural Rubber Enhanced by Hydroxyl Telechelic Natural Rubber as Interfacial Modifier. Journal of Vinyl and Additive Technology, 26(3), 291-303.
Cited: 2 doi: https://doi.org/10.1002/vnl.21743
140Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 6
Cited: 30 doi: https://doi.org/10.3389/fmats.2019.00329
141Hayeemasae N., Sahakaro K. and Ismail H. (2020). Maleated natural rubber compatibilized natural rubber/halloysite nanotubes composites. Polymer (Korea), 44(5), 596-602.
Cited: 1 doi: https://doi.org/10.7317/pk.2020.44.5.596
142Hayeemasae N., Sensem Z., Sahakaro K. and Ismail H. (2020). Maleated natural rubber/halloysite nanotubes composites. Processes, 8(3)
Cited: 3 doi: https://doi.org/10.3390/pr8030286
143Fathurrohman M., Hayeemasae N. and Sahakaro K. (2020). Mechanical and Dynamical Properties of Natural Rubber-Montmorillonite Nanocomposites by Using In Situ Organomodified and Latex Compounding Method. Macromolecular Symposia, 391(1)
Cited: 0 doi: https://doi.org/10.1002/masy.201900130
144Thitithammawong A., Chuycherd N., Leekharee S. and Saiwari S. (2020). Mechanical, morphological, and luminescent properties of strontium phosphorescent filler-filled NR/PP/PEC blends as affected by processing design. Journal of Elastomers and Plastics, 52(5), 383-396.
Cited: 0 doi: https://doi.org/10.1177/0095244319854149
145Promputthangkoon P., Rungvichaniwat A., Kaewthai Andrei N. and Kuasakul T. (2020). On the mechanical properties of para rubber-oil palm ash derived geosynthetic clay liner. IOP Conference Series: Materials Science and Engineering, 773(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/773/1/012054
146Masa A., Krem-Ae A., Ismail H. and Hayeemasae N. (2020). Possible use of sepiolite as alternative filler for natural rubber. Materials Research, 23(4)
Cited: 3 doi: https://doi.org/10.1590/1980-5373-MR-2020-0100
147Hayeemasae N., Jehsoh N. and Sahakaro K. (2020). Promoting the strain-induced crystallization of NR/HNT composites through the use of modified palm stearin. AIP Conference Proceedings, 2205
Cited: 0 doi: https://doi.org/10.1063/1.5142974
148Hayeemasae N., Sahakaro K. and Ismail H. (2020). Properties of unmodified and modified natural rubber/halloysite nanotubes composites. AIP Conference Proceedings, 2267
Cited: 0 doi: https://doi.org/10.1063/5.0016132
149Hayeemasae N. and Masa A. (2020). Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates. Polimeros, 30(2)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.03120
150Worlee A., Saiwari S., Dierkes W. and Sarkawi S. (2020). Significant factors affecting the thermo-chemical de-vulcanization efficiency of tire rubber. Journal of Environmental Treatment Techniques, 8(3), 1118-1123.
Cited: 0
151Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2020). SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUNDS CONTAINING BIO-BASED PROCESS OILS. I: ASPECTS of MIXING SEQUENCE and EPOXIDE CONTENT. Rubber Chemistry and Technology, 93(2), 360-377.
Cited: 7 doi: https://doi.org/10.5254/RCT.19.81462
152Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2020). Silica-reinforced natural rubber tire tread compounds containing bio-based process oils. II: Influence of epoxide and amino functional groups. Rubber Chemistry and Technology, 93(1), 195-207.
Cited: 7 doi: https://doi.org/10.5254/rct.19.81461
153Suwan A., Sukhawipat N., Uthaipan N., Saetung A. and Saetung N. (2020). Some properties of experimental particleboard manufactured from waste bamboo using modified recycled palm oil as adhesive. Progress in Organic Coatings, 149
Cited: 8 doi: https://doi.org/10.1016/j.porgcoat.2020.105899
154Sawangpet K., Walong A., Kaesaman A., Thongnuanchan B., Sakai T. and Lopattananon N. (2020). Structure, physical properties, and flame retardancy of POE/NR/EG blend foams: Effect of crosslinking. Malaysian Journal of Fundamental and Applied Sciences, 16(1), 44-50.
Cited: 1 doi: https://doi.org/10.11113/mjfas.v16n1.1418
155Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2020). Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polymer Testing, 81
Cited: 36 doi: https://doi.org/10.1016/j.polymertesting.2019.106173
156Hayeemasae N., Sensem Z., Surya I., Sahakaro K. and Ismail H. (2020). Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers, 12(4)
Cited: 8 doi: https://doi.org/10.3390/POLYM12040766
157Hayeemasae N. and Ismail H. (2020). Synergistic improvement of mechanical and magnetic properties of a new magnetorheological elastomer composites based on natural rubber and powdered waste natural rubber glove. Polimeros, 30(2)
Cited: 2 doi: https://doi.org/10.1590/0104-1428.10719
158Hayeemasae N. and Ismail H. (2020). Tea waste/carbon black hybrid filled natural rubber composites. Malaysian Journal of Fundamental and Applied Sciences, 16(6), 366-370.
Cited: 0 doi: https://doi.org/10.11113/mjfas.v16n6.1897
159Hayeemasae N. and Ismail H. (2020). Utilization of tea waste as an alternative filler for natural rubber. Jurnal Teknologi, 82(4), 109-115.
Cited: 3 doi: https://doi.org/10.11113/jt.v82.14400
160Adair A., Kaesaman A. and Klinpituksa P. (2020). Water-swellable rubber blend from epoxidized natural rubber and superabsorbent polymer composite. Progress in Rubber, Plastics and Recycling Technology, 36(1), 63-77.
Cited: 2 doi: https://doi.org/10.1177/1477760619895025
161Hayeemasae N., Norhayati S., Ros M. and Ismail H. (2019). A new magnetorheological Elastomer based on natural Rubber/Waste Natural Rubber Glove Blends. KGK Kautschuk Gummi Kunststoffe, 72(1-2), 49-54.
Cited: 0
162Riyapan D., Saetung A. and Saetung N. (2019). A Novel Rigid PU Foam Based on Modified Used Palm Oil as Sound Absorbing Material. Journal of Polymers and the Environment, 27(8), 1693-1708.
Cited: 10 doi: https://doi.org/10.1007/s10924-019-01460-9
163Ninjan R., Thongnuanchan B., Lopattananon N., Thitithammawong A. and Nakason C. (2019). Ambient curable latex films and adhesives based on natural rubber bearing Acetoacetoxy functionality. Polymers for Advanced Technologies, 30(3), 598-607.
Cited: 6 doi: https://doi.org/10.1002/pat.4496
164Saiwari S., Dierkes W. and Noordermeer J. (2019). CHAPTER 8: Recycling of Individual Waste Rubbers. RSC Green Chemistry, 2019-January(59), 186-232.
Cited: 3 doi: https://doi.org/10.1039/9781788013482-00186
165Hayeemasae N. and Ismail H. (2019). Curing and swelling kinetics of new magnetorheological elastomer based on natural rubber/waste natural rubber gloves composites. Journal of Elastomers and Plastics, 51(7-8), 583-602.
Cited: 3 doi: https://doi.org/10.1177/0095244318803987
166Thitithammawong A., Uthaipan N., Junhasavasdikul B., Nakason C. and Kalkornsurapranee E. (2019). Curing characteristics and kinetics of EPDM and EOC compounds in co-vulcanization as blend. Journal of Applied Polymer Science, 136(23)
Cited: 3 doi: https://doi.org/10.1002/app.47613
167Dierkes W., Dijkhuis K., Hoek H., Noordermeer J., Reuvekamp L., Saiwari S. and Blume A. (2019). Designing of cradle-to-cradle loops for elastomer products. Plastics, Rubber and Composites, 48(1), 3-13.
Cited: 8 doi: https://doi.org/10.1080/14658011.2018.1464781
168Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2019). Dispersion and properties of natural rubber-montmorillonite nanocomposites fabricated by novel in situ organomodified and latex compounding method. Polymer Engineering and Science, 59(9), 1830-1839.
Cited: 7 doi: https://doi.org/10.1002/pen.25183
169Saiwari S., Waesateh K., Worlee A., Hayeemasae N., Pattani, Nakason C. and Thani S. (2019). Effects of devulcanization aid on mechanical and thermal properties of devulcanized rubber/virgin natural rubber blends. KGK Kautschuk Gummi Kunststoffe, 72(5), 35-41.
Cited: 2
170Hayeemasae N. and Ismail H. (2019). Enhancing the thermal stability of natural rubber/recycled ethylene propylene diene rubber blends through the use of bio-compatibilizers. Journal of Vinyl and Additive Technology, 25, E155-E165.
Cited: 4 doi: https://doi.org/10.1002/vnl.21674
171Korn Taksapattanakul, Tulyapitak T., Phinyocheep P., Ruamcharoen P., Ruamcharoen J. and Daniel P. (2019). Hydrogenated Natural Rubber as an Alternative Replacement to Ethylene-Propylene-Diene-Monomer (EPDM) Rubber in Terms of Thermal-Oxidative Degradation Properties. Polymer Science - Series B, 61(5), 567-573.
Cited: 2 doi: https://doi.org/10.1134/S1560090419050178
172Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5)
Cited: 18 doi: https://doi.org/10.3390/pr7050315
173Katueangngan K., Tulyapitak T., Saetung A., Soontaranon S. and Nithi-Uthai N. (2019). Improvement in the properties of silica-reinforced natural rubber with the sustainable interfacial modifier: Effect of molecular weight and content of interfacial modifier. Journal of Metals, Materials and Minerals, 29(4), 1-12.
Cited: 1 doi: https://doi.org/10.14456/jmmm.2019.41
174Worlee A., Saiwari S., Dierkes W., Sarkawi S. and Nakason C. (2019). Influence of filler network on thermo-chemical de-vulcanization efficiency of carbon black filled natural rubber. Journal of Metals, Materials and Minerals, 29(3), 76-81.
Cited: 2 doi: https://doi.org/10.14456/jmmm.2019.38
175Hayeemasae N., Ismail H., Matchawet S. and Masa A. (2019). Kinetic of thermal degradation and thermal stability of natural rubber filled with titanium dioxide nanoparticles. Polymer Composites, 40(8), 3149-3155.
Cited: 5 doi: https://doi.org/10.1002/pc.25163
176Lopattananon N., Walong A., Kaesaman A. and Sakai T. (2019). Mechanical, thermal and fire retardant characteristics of NR/PP/ATH thermoplastic vulcanizates. Walailak Journal of Science and Technology, 16(10), 723-737.
Cited: 1
177Thongnuanchan B., Nantayos W., Lopattananon N., Rattanapan S., Thitithammawong A. and Nakason C. (2019). New Thermoplastic Vulcanizate Based on Acetoacetoxy Functionalized Natural Rubber/Polyamide12 Blend Filled with Carbon Black. Journal of Polymers and the Environment, 27(8), 1807-1820.
Cited: 3 doi: https://doi.org/10.1007/s10924-019-01475-2
178Saiwari S., Sripornsawat B. and Hayeemasae N. (2019). Novel thermoplastic vulcanizates based on polyamide 12 blends: Influence of modified devulcanized natural rubber gloves on properties of the blends. Journal of Metals, Materials and Minerals, 29(3), 25-31.
Cited: 1 doi: https://doi.org/10.14456/jmmm.2019.30
179Teppinta W., Junhasavasdikul B. and Nithi-Uthai N. (2019). Properties of EPDM/PP thermoplastic vulcanizates produced by an intermeshing-type internal mixer comparing with a co-rotating twin-screw extruder. Journal of Polymer Engineering, 39(2), 143-151.
Cited: 0 doi: https://doi.org/10.1515/polyeng-2018-0162
180Saiwari S., Yusoh B. and Thitithammawong A. (2019). Recycled Rubber from Waste of Natural Rubber Gloves Blending with Polypropylene for Preparation of Thermoplastic Vulcanizates Compatibilized by Maleic Anhydride. Journal of Polymers and the Environment, 27(5), 1141-1149.
Cited: 5 doi: https://doi.org/10.1007/s10924-019-01413-2
181Hayeemasae N. and Ismail H. (2019). Reinforcement of epoxidized natural rubber through the addition of sepiolite. Polymer Composites, 40(3), 924-931.
Cited: 12 doi: https://doi.org/10.1002/pc.24762
182Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2019). Silanization Efficiency of Silica/Silane in Dependence of Amines in Natural Rubber-based Tire Compounds. IOP Conference Series: Materials Science and Engineering, 548(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/548/1/012001
183Sattayanurak S., Noordermeer J., Sahakaro K., Kaewsakul W., Dierkes W. and Blume A. (2019). Silica-Reinforced Natural Rubber: Synergistic Effects by Addition of Small Amounts of Secondary Fillers to Silica-Reinforced Natural Rubber Tire Tread Compounds. Advances in Materials Science and Engineering, 2019
Cited: 31 doi: https://doi.org/10.1155/2019/5891051
184Hayeemasae N., Salleh S. and Ismail H. (2019). Sustainable Use of Chloroprene Rubber Waste as Blend Component with Natural Rubber, Epoxidized Natural Rubber and Styrene Butadiene Rubber. Journal of Polymers and the Environment, 27(10), 2119-2130.
Cited: 1 doi: https://doi.org/10.1007/s10924-019-01503-1
185Hayeemasae N., Song L. and Ismail H. (2019). Sustainable use of eggshell powder in the composite based on recycled polystyrene and virgin polystyrene mixture. International Journal of Polymer Analysis and Characterization, 24(3), 266-275.
Cited: 8 doi: https://doi.org/10.1080/1023666X.2019.1567089
186Thitithammawong A., Hayichelaeh C., Nakason W. and Jehvoh N. (2019). The use of reclaimed rubber from waste tires for production of dynamically cured natural rubber/reclaimed rubber/polypropylene blends: Effect of reclaimed rubber loading. Journal of Metals, Materials and Minerals, 29(2), 98-104.
Cited: 1 doi: https://doi.org/10.14456/jmmm.2019.24
187Hayeemasae N., Salleh S. and Ismail H. (2019). Using chloroprene rubber waste in rubber blends: Optimizing performance by adding fillers. Green Materials, 7(4), 156-167.
Cited: 1 doi: https://doi.org/10.1680/jgrma.18.00086
188Hayeemasae N., Salleh S. and Ismail H. (2019). Utilization of chloroprene rubber waste as blending component with natural rubber: aspect on metal oxide contents. Journal of Material Cycles and Waste Management, 21(5), 1095-1105.
Cited: 2 doi: https://doi.org/10.1007/s10163-019-00862-0
189Pongdong W., Kummerl?we C., Vennemann N., Thitithammawong A. and Nakason C. (2018). A Comparative Investigation of Rice Husk Ash and Siliceous Earth as Reinforcing Fillers in Dynamically Cured Blends of Epoxidized Natural Rubber (ENR) and Thermoplastic Polyurethane (TPU). Journal of Polymers and the Environment, 26(3), 1145-1159.
Cited: 10 doi: https://doi.org/10.1007/s10924-017-1022-5
190Pongdong W., Kummerl?we C., Vennemann N., Thitithammawong A. and Nakason C. (2018). A comparative study of rice husk ash and siliceous earth as reinforcing fillers in epoxidized natural rubber composites. Polymer Composites, 39(2), 414-426.
Cited: 22 doi: https://doi.org/10.1002/pc.23951
191Salaeh S., Banda T., Pongdong V., Wiessner S., Das A. and Thitithammawong A. (2018). Compatibilization of poly(vinylidene fluoride)/natural rubber blend by poly(methyl methacrylate) modified natural rubber. European Polymer Journal, 107, 132-142.
Cited: 11 doi: https://doi.org/10.1016/j.eurpolymj.2018.08.007
192Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2018). Conductive elastomer composites with low percolation threshold based on carbon black and epoxidized natural rubber. Polymer Composites, 39(6), 1835-1844.
Cited: 2 doi: https://doi.org/10.1002/pc.24136
193Surya I., Hayeemasae N. and Ginting M. (2018). Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/343/1/012009
194Yasin S., Aziz K., Bakar I., Hayeemasae N. and Asiah S. (2018). Durability of helmet material under longitudinal and lateral drop impact. AIP Conference Proceedings, 2031
Cited: 0 doi: https://doi.org/10.1063/1.5066991
195Lopattananon N., Julyanon J., Masa A. and Thongnuanchan B. (2018). Effect of the addition of ENR on foam properties of EVA/NR/Clay nanocomposites. International Polymer Processing, 33(1), 42-51.
Cited: 5 doi: https://doi.org/10.3139/217.3358
196Hayeemasae N., Rathnayake W. and Ismail H. (2018). Effect of ZnO nanoparticles on the simultaneous improvement in curing and mechanical properties of NR/ Recycled EPDM blends. Progress in Rubber, Plastics and Recycling Technology, 34(1), 1-18.
Cited: 2 doi: https://doi.org/10.1177/147776061803400101
197Surya I. and Hayeemasae N. (2018). Effects of alkanolamide addition on crosslink density, mechanical and morphological properties of chloroprene rubber compounds. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 15 doi: https://doi.org/10.1088/1757-899X/343/1/012028
198Sookyung U., Thitithammawong A., Nakason C., Pakhathirathien C. and Thaijaroen W. (2018). Effects of Cashew Nut Shell Liquid and Its Decarboxylated Form on the Properties of Natural Rubber. Journal of Polymers and the Environment, 26(8), 3451-3457.
Cited: 4 doi: https://doi.org/10.1007/s10924-018-1227-2
199Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2018). Enhancing the silanization reaction of the silica-silane system by different amines in model and practical silica-filled natural rubber compounds. Polymers, 10(6)
Cited: 23 doi: https://doi.org/10.3390/polym10060584
200Chueangchayaphan N., Nithi-Uthai N., Techakittiroj K. and Manuspiya H. (2018). Evaluation of dielectric cure monitoring for in situ measurement of natural rubber vulcanization. Advances in Polymer Technology, 37(8), 3384-3391.
Cited: 3 doi: https://doi.org/10.1002/adv.22122
201Waesateh K., Saiwari S., Ismail H., Othman N., Soontaranon S. and Hayeemasae N. (2018). Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. International Journal of Polymer Analysis and Characterization, 23(3), 260-270.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2018.1438773
202Thongnuanchan B., Ninjan R., Kalkornsurapranee E., Lopattananon N. and Nakason C. (2018). Glutaraldehyde as Ambient Temperature Crosslinking Agent of Latex Films from Natural Rubber Grafted with Poly(diacetone acrylamide). Journal of Polymers and the Environment, 26(7), 3069-3085.
Cited: 8 doi: https://doi.org/10.1007/s10924-018-1193-8
203Sengloyluan K., Noordermeer J., Sahakaro K., Dierkes W. and Blume A. (2018). Improvement of natural rubber/silica interaction by silane grafting of the polymer. Rubber World, 259(3), 17-21.
Cited: 0
204Kalkornsurapranee E., Yung-Aoon W., Thongnuanchan B., Thitithammawong A., Nakason C. and Johns J. (2018). Influence of grafting content on the properties of cured natural rubber grafted with PMMAs using glutaraldehyde as a cross-linking agent. Advances in Polymer Technology, 37(5), 1478-1485.
Cited: 13 doi: https://doi.org/10.1002/adv.21806
205Lopattananon N., Walong A. and Sakai T. (2018). Influence of incorporation methods of ATH on microstructure, elastomeric properties, flammability, and thermal decomposition of dynamically vulcanized NR/PP blends. Journal of Applied Polymer Science, 135(18)
Cited: 13 doi: https://doi.org/10.1002/app.46231
206Hayeemasae N., Surya I. and Ismail H. (2018). Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/309/1/012110
207Abdul Majid R., Ismail H. and Hayeemasae N. (2018). Poly(Vinyl Chloride)/Epoxidized Natural Rubber/Kenaf Powder Composites. Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications, 283-312.
Cited: 1 doi: https://doi.org/10.1016/B978-0-08-102160-6.00015-9
208Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2018). Promoting interfacial compatibility of silica-reinforced natural rubber tire compounds byaliphatic amine. Rubber Chemistry and Technology, 91(2), 433-452.
Cited: 10 doi: https://doi.org/10.5254/rct.18.81630
209Surya I., Sukeksi L. and Hayeemasae N. (2018). Studies on cure index, swelling behaviour, tensile and thermooxidative properties of natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/309/1/012060
210Sukhawipat N., Saetung N., Pilard J., Bistac S. and Saetung A. (2018). Synthesis and characterization of novel natural rubber based cationic waterborne polyurethane: Effect of emulsifier and diol class chain extender. Journal of Applied Polymer Science, 135(3)
Cited: 17 doi: https://doi.org/10.1002/app.45715
211Thongnuanchan B., Ninjan R., Kaesaman A. and Nakason C. (2018). Synthesis of modified Natural Rubber with grafted poly(acetoacetoxyethyl methacrylate-co-methyl methacrylate) and performance of derived adhesives with GTA crosslinker. Polymer Engineering and Science, 58(9), 1610-1618.
Cited: 6 doi: https://doi.org/10.1002/pen.24750
212Pongdong W., Kummerl?we C., Vennemann N., Thitithammawong A. and Nakason C. (2018). Thermodynamically and kinetically favored locations of rice husk ash particles in the phase structure, and the properties of epoxidized natural rubber/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 135(38)
Cited: 1 doi: https://doi.org/10.1002/app.46681
213Salaeh S., Cassagnau P., Boiteux G., Wiessner S. and Nakason C. (2018). Thermoplastic vulcanizates based on poly(vinylidene fluoride)/Epoxidized natural rubber blends: Effects of phenolic resin dosage and blend ratio. Materials Chemistry and Physics, 219, 222-232.
Cited: 11 doi: https://doi.org/10.1016/j.matchemphys.2018.08.029
214Sripornsawat B., Saiwari S. and Nakason C. (2018). Thermoplastic vulcanizates based on waste truck tire rubber and copolyester blends reinforced with carbon black. Waste Management, 79, 638-646.
Cited: 13 doi: https://doi.org/10.1016/j.wasman.2018.08.038
215Thongnuanchan B., Ninjan R. and Nakason C. (2017). Acetoacetoxy functionalized natural rubber latex capable of forming cross-linkable film under ambient conditions. Iranian Polymer Journal (English Edition), 26(1), 41-53.
Cited: 6 doi: https://doi.org/10.1007/s13726-016-0497-6
216Boontawee H., Nakason C., Kaesaman A., Thitithammawong A. and Chewchanwuttiwong S. (2017). Benzyl Esters of Vegetable Oils as Processing Oil in Carbon Black–Filled SBR Compounding: Chemical Modification, Characterization, and Performance. Advances in Polymer Technology, 36(3), 320-330.
Cited: 9 doi: https://doi.org/10.1002/adv.21610
217Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2017). Dynamically cured poly(vinylidene fluoride)/epoxidized natural rubber blends filled with ferroelectric ceramic barium titanate. Composites Part A: Applied Science and Manufacturing, 93, 107-116.
Cited: 16 doi: https://doi.org/10.1016/j.compositesa.2016.11.024
218Uthaipan N., Jarnthong M., Peng Z., Junhasavasdikul B., Nakason C. and Thitithammawong A. (2017). Effects of crosslinked elastomer particles on heterogeneous nucleation of isotactic PP in dynamically vulcanized EPDM/PP and EOC/PP blends. Journal of Polymer Research, 24(8)
Cited: 10 doi: https://doi.org/10.1007/s10965-017-1279-3
219Matchawet S., Kaesaman A., Vennemann N., Kumerl?we C. and Nakason C. (2017). Effects of imidazolium ionic liquid on cure characteristics, electrical conductivity and other related properties of epoxidized natural rubber vulcanizates. European Polymer Journal, 87, 344-359.
Cited: 18 doi: https://doi.org/10.1016/j.eurpolymj.2016.12.037
220Matchawet S., Kaesaman A., Bomlai P. and Nakason C. (2017). Effects of multi-walled carbon nanotubes and conductive carbon black on electrical, dielectric, and mechanical properties of epoxidized natural rubber composites. Polymer Composites, 38(6), 1031-1042.
Cited: 10 doi: https://doi.org/10.1002/pc.23666
221Thongnuanchan B., Rattanapan S., Persalea K., Thitithammawong A., Pichaiyut S. and Nakason C. (2017). Improving properties of natural rubber/polyamide 12 blends through grafting of diacetone acrylamide functional group. Polymers for Advanced Technologies, 28(9), 1148-1155.
Cited: 8 doi: https://doi.org/10.1002/pat.4007
222Naebpetch W., Junhasavasdikul B., Saetung A., Tulyapitak T. and Nithi-Uthai N. (2017). Influence of filler type and loading on cure characteristics and vulcanisate properties of SBR compounds with a novel mixed vulcanisation system. Plastics, Rubber and Composites, 46(3), 137-145.
Cited: 6 doi: https://doi.org/10.1080/14658011.2017.1299419
223Adair A., Klinpituksa P. and Kaesaman A. (2017). Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities. AIP Conference Proceedings, 1868
Cited: 4 doi: https://doi.org/10.1063/1.4995098
224Uthaipan N., Junhasavasdikul B., Vennemann N., Nakason C. and Thitithammawong A. (2017). Investigation of surface properties and elastomeric behaviors of EPDM/EOC/PP thermoplastic vulcanizates with different octene contents. Journal of Applied Polymer Science, 134(21)
Cited: 9 doi: https://doi.org/10.1002/app.44857
225Sahakaro K. (2017). Mechanism of reinforcement using nanofillers in rubber nanocomposites. Progress in Rubber Nanocomposites, 81-113.
Cited: 19 doi: https://doi.org/10.1016/B978-0-08-100409-8.00003-6
226Masa A., Saito H., Sakai T., Kaesaman A. and Lopattananon N. (2017). Morphological evolution and mechanical property enhancement of natural rubber/polypropylene blend through compatibilization by nanoclay. Journal of Applied Polymer Science, 134(10)
Cited: 17 doi: https://doi.org/10.1002/app.44574
227Hayeemasae N., Rathnayake W. and Ismail H. (2017). Nano-sized TiO<inf>2</inf>-reinforced natural rubber composites prepared by latex compounding method. Journal of Vinyl and Additive Technology, 23(3), 200-209.
Cited: 20 doi: https://doi.org/10.1002/vnl.21497
228Jarnthong M., Peng Z., Lopattananon N. and Nakason C. (2017). Nanosilica-reinforced Epoxidized natural rubber nanocomposites: Effect of Epoxidation level on morphological and mechanical properties. Polymer Composites, 38(6), 1151-1157.
Cited: 7 doi: https://doi.org/10.1002/pc.23678
229Matchawet S., Kaesaman A., Vennemann N., Kummerl?we C. and Nakason C. (2017). Optimization of Electrical Conductivity, Dielectric Properties, and Stress Relaxation Behavior of Conductive Thermoplastic Vulcanizates Based on ENR/COPA Blends by Adjusting Mixing Method and Ionic Liquid Loading. Industrial and Engineering Chemistry Research, 56(13), 3629-3639.
Cited: 8 doi: https://doi.org/10.1021/acs.iecr.7b00252
230Taksapattanakul K., Tulyapitak T., Phinyocheep P., Ruamcharoen P., Ruamcharoen J., Lagarde F., Edely M. and Daniel P. (2017). Raman investigation of thermoplastic vulcanizates based on hydrogenated natural rubber/polypropylene blends. Polymer Testing, 57, 107-114.
Cited: 15 doi: https://doi.org/10.1016/j.polymertesting.2016.11.016
231Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2017). Reinforcement of natural rubber by silica/silane in dependence of different amine types. Rubber Chemistry and Technology, 90(4), 651-666.
Cited: 10 doi: https://doi.org/10.5254/rct.82.83708
232Salaeh S., Kova??c M., Kosir D., Ku?i? H., Lavren?i?-?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2017). Reuse of TiO<inf>2</inf>-based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 333, 117-129.
Cited: 14 doi: https://doi.org/10.1016/j.jphotochem.2016.10.015
233Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2017). Silane grafted natural rubber and its compatibilization effect on silica-reinforced rubber tire compounds. Express Polymer Letters, 11(12), 1003-1022.
Cited: 18 doi: https://doi.org/10.3144/expresspolymlett.2017.95
234Adair A., Kaesaman A. and Klinpituksa P. (2017). Superabsorbent materials derived from hydroxyethyl cellulose and bentonite: Preparation, characterization and swelling capacities. Polymer Testing, 64, 321-329.
Cited: 23 doi: https://doi.org/10.1016/j.polymertesting.2017.10.018
235Taksapattanakul K., Tulyapitak T., Phinyocheep P., Ruamcharoen P., Ruamcharoen J., Lagarde F. and Daniel P. (2017). The effect of percent hydrogenation and vulcanization system on ozone stability of hydrogenated natural rubber vulcanizates using Raman spectroscopy. Polymer Degradation and Stability, 141, 58-68.
Cited: 9 doi: https://doi.org/10.1016/j.polymdegradstab.2017.04.006
236Naebpetch W., Nithi-Uthai N., Saetung A., Junhasavasdikul B. and Kaewsakul W. (2017). Utilisation of zinc dimethacrylate as coagent in sulfur-peroxide dual vulcanisation with different sulfur systems for styrene-butadiene rubber compounds. Journal of Rubber Research, 20(2), 71-86.
Cited: 0 doi: https://doi.org/10.1007/bf03449143
237Pakhathirathien C., Pearuang K., Rungvichaniwat A., Kaesaman A. and Nakason C. (2016). A comparative study of stearyl aromatic esters and aromatic oil as processing aids in natural rubber compounds. Songklanakarin Journal of Science and Technology, 38(5), 501-506.
Cited: 1
238Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2016). Compatibilisation of silica-filled natural rubber compounds by functionalised low molecular weight polymer. Journal of Rubber Research, 19(1), 28-42.
Cited: 6
239Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2016). Compatibilization of silica-filled natural rubber compounds by combined effects of functionalized low molecular weight rubber and silane. Journal of Elastomers and Plastics, 48(2), 145-163.
Cited: 16 doi: https://doi.org/10.1177/0095244314568469
240Hayeemasae N., Surya I. and Ismail H. (2016). Compatibilized natural rubber/recycled ethylene-propylene-diene rubber blends by biocompatibilizer. International Journal of Polymer Analysis and Characterization, 21(5), 396-407.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2016.1160970
241Salaeh S., Juretic Perisic D., Bio?i? M., Ku?i? H., Babi? S., Lavren?i?-?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2016). Diclofenac removal by simulated solar assisted photocatalysis using TiO<inf>2</inf>-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 304, 289-302.
Cited: 96 doi: https://doi.org/10.1016/j.cej.2016.06.083
242Hayeemasae N., Ismail H., Khoon T., Husseinsyah S. and Harahap H. (2016). Effect of carbon black on the properties of polypropylene/recycled natural rubber glove blends. Progress in Rubber, Plastics and Recycling Technology, 32(4), 241-252.
Cited: 4 doi: https://doi.org/10.1177/147776061603200404
243Lopattananon N., Walong A., Kaesaman A. and Seadan M. (2016). Effect of MAH-g-PP on the Performance of ATH filled NR/PP Thermoplastic Vulcanisates. Journal of Rubber Research, 19(4), 243-260.
Cited: 5
244Saiwari S., Dierkes W. and Noordermeer J. (2016). Efficient de-vulcanization of sulfur-vulcanized SBR. Gummi, Fasern, Kunststoffe, 69(11), 706-713.
Cited: 0
245Matchawet S., Kaesaman A., Bomlai P. and Nakason C. (2016). Electrical, dielectric, and dynamic mechanical properties of conductive carbon black/epoxidized natural rubber composites. Journal of Composite Materials, 50(16), 2191-2202.
Cited: 23 doi: https://doi.org/10.1177/0021998315602941
246Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Factors influencing the flocculation process in silica-reinforced natural rubber compounds. Journal of Elastomers and Plastics, 48(5), 426-441.
Cited: 12 doi: https://doi.org/10.1177/0095244315580456
247Naebpetch W., Junhasavasdikul B., Saetung A., Tulyapitak T. and Nithi-Uthai N. (2016). Influence of accelerator/sulphur and co-agent/peroxide ratios in mixed vulcanisation systems on cure characteristics, mechanical properties and heat aging resistance of vulcanised SBR. Plastics, Rubber and Composites, 45(10), 436-444.
Cited: 5 doi: https://doi.org/10.1080/14658011.2016.1244029
248Sripornsawat B., Saiwari S., Pichaiyut S. and Nakason C. (2016). Influence of ground tire rubber devulcanization conditions on properties of its thermoplastic vulcanizate blends with copolyester. European Polymer Journal, 85, 279-297.
Cited: 32 doi: https://doi.org/10.1016/j.eurpolymj.2016.10.031
249Uthaipan N., Jarnthong M., Peng Z., Junhasavasdikul B., Nakason C. and Thitithammawong A. (2016). Micro-scale morphologies of EPDM/EOC/PP ternary blends: Relating experiments to predictive theories of dispersion in melt mixing. Materials and Design, 100, 19-29.
Cited: 24 doi: https://doi.org/10.1016/j.matdes.2016.03.099
250Riyapan D., Saetung N. and Saetung A. (2016). Modification of used palm oil: Preliminary study of its potentiality as polyurethane foam precursors. Key Engineering Materials, 705, 50-54.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/KEM.705.50
251Saetung N., Somjit S., Thongkapsri P., Tulyapitak T. and Saetung A. (2016). Modified rubber seed oil based polyurethane foams. Journal of Polymer Research, 23(3), 1-10.
Cited: 15 doi: https://doi.org/10.1007/s10965-016-0959-8
252Masa A., Saito R., Saito H., Sakai T., Kaesaman A. and Lopattananon N. (2016). Phenolic resin-crosslinked natural rubber/clay nanocomposites: Influence of clay loading and interfacial adhesion on strain-induced crystallization behavior. Journal of Applied Polymer Science, 133(12)
Cited: 15 doi: https://doi.org/10.1002/app.43214
253Saetung A., Rungvichaniwat A., Tsupphayakorn-ake P., Bannob P., Tulyapituk T. and Saetung N. (2016). Properties of waterborne polyurethane films: effects of blend formulation with hydroxyl telechelic natural rubber and modified rubber seed oils. Journal of Polymer Research, 23(12)
Cited: 16 doi: https://doi.org/10.1007/s10965-016-1160-9
254Pongdong W., Kummerl?we C., Vennemann N., Thitithammawong A. and Nakason C. (2016). Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: Influences of RHA loading. Polymer Testing, 53, 245-256.
Cited: 26 doi: https://doi.org/10.1016/j.polymertesting.2016.05.026
255Siriwong S., Rungvichaniwat A., Klinpituksa P., Musa K. and Abdullah A. (2016). Quantitative analysis of natural antioxidant remaining in various natural rubber types. Journal of Polymer Materials, 33(1), 173-179.
Cited: 0
256Sasdipan K., Kaesaman A., Kummerl?we C., Vennemann N. and Nakason C. (2016). Recyclability of novel dynamically cured copolyester/epoxidized natural rubber blends. Journal of Material Cycles and Waste Management, 18(1), 156-167.
Cited: 0 doi: https://doi.org/10.1007/s10163-014-0324-0
257Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Reduced ethanol emissions by a combination of epoxidized natural rubber and silane coupling agent for silica-reinforced natural rubber-based tire treads. Rubber Chemistry and Technology, 89(3), 419-435.
Cited: 17 doi: https://doi.org/10.5254/rct.16.84813
258Sengloyluan K., Dierkes W., Noordermeer J. and Sahakaro K. (2016). Reinforcement Efficiency of silica in dependence of different types of silane coupling Agents in natural rubber-based tire compounds. KGK Kautschuk Gummi Kunststoffe, 69(5), 44-53.
Cited: 8
259Kova??c M., Salaeh S., Ku?i? H., ?uligoj A., Kete M., Fanetti M., ?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2016). Solar-driven photocatalytic treatment of diclofenac using immobilized TiO<inf>2</inf>-based zeolite composites. Environmental Science and Pollution Research, 23(18), 17982-17994.
Cited: 29 doi: https://doi.org/10.1007/s11356-016-6985-6
260Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Synergistic effects in silica-reinforced natural rubber compounds compatibilised by ENR in combination with different silane coupling agent types. Journal of Rubber Research, 19(3), 170-189.
Cited: 3
261Sukhawipat N., Saetung N. and Saetung A. (2016). Synthesis of novel cationic waterborne polyurethane from natural rubber and its properties testing. Key Engineering Materials, 705, 19-23.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/KEM.705.19
262Saiwari S., van Hoek J., Dierkes W., Reuvekamp L., Heideman G., Blume A. and Noordermeer J. (2016). Upscaling of a batch de-vulcanization process for ground car tire rubber to a continuous process in a twin screw extruder. Materials, 9(9)
Cited: 14 doi: https://doi.org/10.3390/ma9090724
263Thongnuanchan B., Ninjan R., Kaesaman A. and Nakason C. (2015). A novel method to crosslink natural rubber latex adhesive at ambient temperature. Polymer Bulletin, 72(1), 135-155.
Cited: 10 doi: https://doi.org/10.1007/s00289-014-1264-5
264Sarkawi S., Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2015). A review on reinforcement of natural rubber by silica fillers for use in low-rolling resistance tyres. Journal of Rubber Research, 18(4), 203-233.
Cited: 25
265Saiwari S., Dierkes W. and Noordermeer J. (2015). Comparative investigation of the devulcanisation parameters of tyre rubbers. Gummi, Fasern, Kunststoffe, 68(1), 36-42.
Cited: 0
266Sakmat J., Lopattananon N. and Kaesaman A. (2015). Effect of fiber surface modification on properties of artificial leather from leather fiber filled natural rubber composites. Key Engineering Materials, 659, 378-382.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.378
267Ismail H., Khoon T., Hayeemasae N. and Salmah H. (2015). Effect of oil palm ash on the properties of polypropylene/recycled natural rubber gloves/oil palm ash composites. BioResources, 10(1), 1495-1505.
Cited: 11 doi: https://doi.org/10.15376/biores.10.1.1495-1505
268Siriwong S., Rungvichaniwat A. and Klinpituksa P. (2015). Effect of various extracted solvent on DPPH radical scavenging activity of natural rubber. Key Engineering Materials, 659, 388-393.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.388
269Uthaipan N., Jarnthong M., Peng Z., Junhasavasdikul B., Nakason C. and Thitithammawong A. (2015). Effects of cooling rates on crystallization behavior and melting characteristics of isotactic polypropylene as neat and in the TPVs EPDM/PP and EOC/PP. Polymer Testing, 44, 101-111.
Cited: 30 doi: https://doi.org/10.1016/j.polymertesting.2015.04.002
270Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2015). Flexible 0-3 ceramic-polymer composites of barium titanate and epoxidized natural rubber. International Journal of Applied Ceramic Technology, 12(1), 106-115.
Cited: 22 doi: https://doi.org/10.1111/ijac.12129
271Kaewsakul W. and Sahakaro K. (2015). Formulation optimisation for silica-reinforced natural rubber compounds. Gummi, Fasern, Kunststoffe, 68(5), 300-310.
Cited: 0
272Julyanon J., Kaesaman A., Sakai T. and Lopattananon N. (2015). Improvement of structure and properties of nanocomposite foams based on ethylene-vinyl acetate (EVA)/natural rubber (NR)/nanoclay: Effect of NR addition. Key Engineering Materials, 659, 418-422.
Cited: 5 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.418
273Thitithammawong A., Nakason C. and Hayichelaeh C. (2015). Influence of oxirane ring and phenylenediamine structures in modified palm processing oils on properties of ENR/PP TPVs. Macromolecular Symposia, 354(1), 21-27.
Cited: 4 doi: https://doi.org/10.1002/masy.201400070
274Moojea-Te C., Rungvichaniwat A. and Sahakaro K. (2015). Influence of processing oil based on modified epoxidized vegetable oil with N-phenyl-?-phenylenediamine (PPD) on extrusion process behaviors of natural rubber compounds. Key Engineering Materials, 659, 423-427.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.423
275Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2015). Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polymer Engineering and Science, 55(4), 836-842.
Cited: 72 doi: https://doi.org/10.1002/pen.23949
276Hayeemasae N., Ismail H. and Rashid A. (2015). Optimization of accelerators on curing characteristics, tensile, and dynamic mechanical properties of (natural rubber)/(recycled ethylene-propylene-diene-monomer) blends. Journal of Vinyl and Additive Technology, 21(2), 79-88.
Cited: 9 doi: https://doi.org/10.1002/vnl.21358
277Kalkornsurapranee E., Kaewsakul W., Daengli P., Aree P., Saiwari S. and Thitithammawong A. (2015). Particleboard from para rubber wood bonded with natural rubber-g-methyl (methacrylate). Advances in Environmental Biology, 9(13), 20-24.
Cited: 3
278Petchkaew A., Sahakaro K., Dierkes W. and Noordermeer J. (2015). Petroleum-based safe process oils in NR and NR/SBR blends: Part III. Effects of oil types and contents on the properties of carbon black filled compounds. KGK Kautschuk Gummi Kunststoffe, 68(9), 20-29.
Cited: 5
279Toh-Ae P., Junhasavasdikul B., Lopattananon N. and Sahakaro K. (2015). Photocatalytic activity and properties of nanotitanium dioxide-filled natural rubber in the presence of coupling agents. Key Engineering Materials, 659, 474-478.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.474
280Uthaipan N., Junhasavasdikul B., Nakason C. and Thitithammawong A. (2015). Prediction models for the key mechanical properties of EPDM/PP blends as affected by processing parameters and their correlation with stress relaxation and phase morphologies. Polymers for Advanced Technologies, 26(8), 970-977.
Cited: 12 doi: https://doi.org/10.1002/pat.3511
281Hayeemasae N. and Ismail H. (2015). Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites. Journal of Thermoplastic Composite Materials, 28(3), 415-430.
Cited: 5 doi: https://doi.org/10.1177/0892705713486124
282Thitithammawong A., Rungvichaniwat A. and Srangkum S. (2015). Properties of dual cured polyurethane film coatings based on natural rubber. Macromolecular Symposia, 354(1), 354-360.
Cited: 3 doi: https://doi.org/10.1002/masy.201400100
283Siriwong S., Rungvichaniwat A., Klinpituksa P., Musa K. and Abdullah A. (2015). Quantitative analysis of total phenolic contents and antioxidant activity of fresh field natural rubber latex. Macromolecular Symposia, 354(1), 265-272.
Cited: 2 doi: https://doi.org/10.1002/masy.201400101
284Masa A., Iimori S., Saito R., Saito H., Sakai T., Kaesaman A. and Lopattananon N. (2015). Strain-induced crystallization behavior of phenolic resin crosslinked natural rubber/clay nanocomposites. Journal of Applied Polymer Science, 132(39)
Cited: 15 doi: https://doi.org/10.1002/app.42580
285Thongnuanchan B., Ninjan R., Kaesaman A. and Nakason C. (2015). Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly(diacetone acrylamide) using DMTA. Journal of Polymer Research, 22(6), 1-11.
Cited: 14 doi: https://doi.org/10.1007/s10965-015-0760-0
286Saiwari S., Waesateh K., Lopattananon N., Thititammawong A. and Kaesaman A. (2015). Study on reuse of diphenyl disulfide-devulcanized natural rubber from truck tires. Macromolecular Symposia, 354(1), 155-162.
Cited: 1 doi: https://doi.org/10.1002/masy.201400103
287Saetung A., Tsupphayakorn-ake P., Tulyapituk T., Saetung N., Phinyocheep P. and Pilard J. (2015). The chain extender content and NCO/OH ratio flexibly tune the properties of natural rubber-based waterborne polyurethanes. Journal of Applied Polymer Science, 132(36)
Cited: 13 doi: https://doi.org/10.1002/app.42505
288Thitithammawong A., Nakason C. and Kasoe R. (2015). The effects of chlorination and epoxidation on mooney viscosity, curing characteristics and vulcanisate properties of silica filled chlorinated epoxidised natural rubber. Journal of Rubber Research, 18(1), 1-16.
Cited: 0
289Lopattananon N., Julyanon J., Masa A., Kaesaman A., Thongpin C. and Sakai T. (2015). The role of nanofillers on (natural rubber)/(ethylene vinyl acetate)/clay nanocomposite in blending and foaming. Journal of Vinyl and Additive Technology, 21(2), 134-146.
Cited: 15 doi: https://doi.org/10.1002/vnl.21368
290Hayeemasae N. and Ismail H. (2015). Thermo-Mechanical Performance of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends in the Presence of ZnO Nanoparticles. International Journal of Polymer Analysis and Characterization, 20(6), 514-528.
Cited: 7 doi: https://doi.org/10.1080/1023666X.2015.1050905
291Thitithammawong A., Nakason C. and Warawat T. (2014). Application of natural rubbers as blend component in formulation of flexographic printing photopolymer. Part I: Effect of natural rubber types, blend ratios as well as types and quantities of acrylate monomer. Journal of Rubber Research, 17(3), 143-160.
Cited: 0
292Saiwari S., Lohyi E. and Nakason C. (2014). Application of NR gloves reclaim: Cure and mechanical properties of NR/reclaim rubber blends. Advanced Materials Research, 844, 437-440.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.437
293Uthaipan N., Junhasavasdikul B., Nakason C. and Thitithammawong A. (2014). Assessment of mixing efficiency of intermeshing rotor mixers on morphological and mechanical properties and crosslink density of dynamically vulcanized EPDM/PP blends. Advanced Materials Research, 844, 122-126.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.122
294Hayeemasae N. and Ismail H. (2014). Blending of Natural Rubber/Recycled Ethylene-Propylene-diene Rubber: Promoting the Interfacial Adhesion Between Phases by Natural Rubber Latex. International Journal of Polymer Analysis and Characterization, 19(2), 159-174.
Cited: 4 doi: https://doi.org/10.1080/1023666X.2014.873597
295Klinpituksa P., Kongkalai P. and Kaesaman A. (2014). Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties. IOP Conference Series: Materials Science and Engineering, 62(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/62/1/012005
296Kaewkabpet D., Nakason C., Kaesaman A. and Thitithammawong A. (2014). Changes in mixing torque, mechanical and dynamic rheological properties of epoxidized natural rubber and copolyester blends as affected by epoxidized natural rubber contents. Advanced Materials Research, 844, 69-72.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.69
297Saiwari S., Dierkes W. and Noordermeer J. (2014). Comparative investigation of the devulcanization parameters of tire rubbers. Rubber Chemistry and Technology, 87(1), 31-42.
Cited: 34 doi: https://doi.org/10.5254/rct.13.87933
298Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2014). Comparative properties of silica- and carbon blackreinforced natural rubber in the presence of epoxidized lowmolecular weight polymer. Rubber Chemistry and Technology, 87(2), 320-339.
Cited: 26 doi: https://doi.org/10.5254/rct.13.86970
299Inted S., Lopattananon N., Thongnuanchan B. and Kaesaman A. (2014). Comparative study of NR/BR/PP and NR/NBR/PP ternary blends for high abrasion resistant thermoplastic vulcanizates. Advanced Materials Research, 844, 131-134.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.131
300Hayeemasae N., Ismail H. and Rashid A. (2014). Comparison of thermal stability of sulfur, peroxide and EB irradiation cured NR compounds containing ground EPDM waste. Advanced Materials Research, 844, 267-271.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.267
301Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica. Rubber Chemistry and Technology, 87(2), 291-310.
Cited: 35 doi: https://doi.org/10.5254/RCT.13.86990
302Salaeh S., Boiteux G., Gain O., Cassagnau P. and Nakason C. (2014). Dynamic mechanical and dielectric properties of poly(Vinylidene fluoride) and epoxidized natural rubber blends. Advanced Materials Research, 844, 97-100.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.97
303Hayeemasae N. and Ismail H. (2014). Dynamic mechanical behavior of natural rubber/waste ethylene-propylene- diene rubber blends. KGK Kautschuk Gummi Kunststoffe, 67(7-8), 33-39.
Cited: 2
304Sasdipan K., Kaesaman A., Vennemann N. and Nakason C. (2014). Dynamically cured co-polyester/epoxidized natural rubber blends: Influence of epoxide contents. Advanced Materials Research, 844, 135-139.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.135
305Dayang H., Saiwari S., Dierkes W. and Noordermeer J. (2014). Effect of ground tyre rubber devulcanisates on the properties of a passenger car tyre tread formulation. Advanced Materials Research, 844, 425-428.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.425
306Lamlaeh S., Kaesaman A. and Nakason C. (2014). Effect of mixing temperature on the mechanical, dynamic and morphological properties of maleated natural rubber/copolyester blends. Advanced Materials Research, 844, 105-108.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.105
307Hayichelaeh C., Wangwon W., Nakason C. and Thitithammawong A. (2014). Effect of N-phenyl-p-phenylenediamine modified vegetable oils on properties of ENR/PP thermoplastic vulcanizates: A comparative study. Advanced Materials Research, 844, 162-165.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.162
308Lopattananon N., Tanglakwaraskul S., Kaesaman A., Seadan M. and Sakai T. (2014). Effect of nanoclay addition on morphology and elastomeric properties of dynamically vulcanized natural rubber/polypropylene nanocomposites. International Polymer Processing, 29(3), 332-341.
Cited: 15 doi: https://doi.org/10.3139/217.2935
309Lopattananon N., Wangpradit N., Nakason C. and Kaesaman A. (2014). Effect of rubber composition on foaming and properties of EVA/NR/PP thermoplastic vulcanisates (TPVs). Journal of Rubber Research, 17(2), 80-95.
Cited: 12
310Chanpon K., Thitithammawong A., Nakason C. and Kaesaman A. (2014). Effect of unmodified and modified epoxidized soyabean oils on properties of black-NBR compounds and black-NBR vulcanizates. Advanced Materials Research, 844, 49-52.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.49
311Matchawet S., Nakason C. and Kaesaman A. (2014). Electrical and mechanical properties of conductive carbon black filled epoxidized natural rubber. Advanced Materials Research, 844, 255-258.
Cited: 6 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.255
312Hayeemasae N. and Ismail H. (2014). Enhancing the thermal stability of natural rubber/recycled ethylene-propylene-diene rubber blends by means of introducing pre-vulcanised ethylene-propylene-diene rubber and electron beam irradiation. Materials and Design, 56, 1057-1067.
Cited: 19 doi: https://doi.org/10.1016/j.matdes.2013.12.020
313Hayeemasae N. and Ismail H. (2014). Fatigue life, thermal analysis and morphology of recycled poly(ethylene terephthalate)/commercial fillers hybrid filled natural rubber composites. Progress in Rubber, Plastics and Recycling Technology, 30(2), 115-128.
Cited: 7 doi: https://doi.org/10.1177/147776061403000204
314Boontawee H., Nakason C., Kaesaman A., Thitithammawong A. and Chewchanwuttiwong S. (2014). Influence of benzyl ester oil on processability of silica filled NR compound. Advanced Materials Research, 844, 221-224.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.221
315Sasdipan K., Kaesaman A., Vennemann N. and Nakason C. (2014). Influence of blend ratio on properties of novel thermoplastic vulcanizates based on copolyester/epoxidized natural rubber blends. Iranian Polymer Journal (English Edition), 23(12), 965-977.
Cited: 2 doi: https://doi.org/10.1007/s13726-014-0292-1
316Romin R., Nakason C. and Thitithammawong A. (2014). Influence of curing systems on mechanical, dynamic, and morphological properties of dynamically cured epoxidized natural rubber/ copolyamide blends. Advanced Materials Research, 844, 81-84.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.81
317Yokkhun P., Thongnuanchan B. and Nakason C. (2014). Influence of epoxide levels in epoxidized natural rubber (ENR) molecules on cure characteristics, dynamic properties and mechanical properties of ENR/montmorillonite clay nanocomposites. Advanced Materials Research, 844, 247-250.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.247
318Dayang A., Saiwari S., Dierkes W. and Noordermeer J. (2014). Influence of ground tyre rubber devulcanisates on morphology and properties of tread tyre formulation. Advanced Materials Research, 1024, 159-162.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.1024.159
319Ieadsang S., Thitithammawong A., Nakason C. and Kaesaman A. (2014). Influence of N-phenyl-p-phenylenediamine modified epoxidized palm oil on properties of carbon black filled natural rubber compound and vulcanizate. Advanced Materials Research, 844, 239-242.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.239
320Jarnthong M., Nakason C., Peng Z. and Lopattananon N. (2014). Influence of surface modification and content of nanosilica on dynamic mechanical properties of epoxidized natural rubber nanocomposites. Advanced Materials Research, 844, 289-292.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.289
321Hayichelaeh C., Nakason C. and Thitithammawong A. (2014). Mixing methods influencing on properties of epoxidized natural rubber/polypropylene thermoplastic vulcanizates. Advanced Materials Research, 844, 109-112.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.109
322Issarayungyuen P., Nithi-Uthai N., Pichayakorn W. and Phaechamud T. (2014). Natural Rubber Latex foam loading with metronidazole. Advanced Materials Research, 844, 490-493.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.490
323Nakason C., Sasdipan K. and Kaesaman A. (2014). Novel natural rubber-g-N-(4-hydroxyphenyl)maleimide: Synthesis and its preliminary blending products with polypropylene. Iranian Polymer Journal (English Edition), 23(1), 1-12.
Cited: 7 doi: https://doi.org/10.1007/s13726-013-0194-7
324Hayeemasae N., Ismail H. and Azura A. (2014). Optimisation of accelerators and vulcanising systems on thermal stability of natural rubber/recycled ethylene-propylene-diene-monomer blends. Materials and Design, 53, 651-661.
Cited: 36 doi: https://doi.org/10.1016/j.matdes.2013.06.078
325Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Optimization of epoxidation degree and silane coupling agent content for silica-filled epoxidized natural rubber tire tread compounds. Advanced Materials Research, 844, 243-246.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.243
326Saetung N., Dawkrajai D. and Saetung A. (2014). Preparation and properties of polyurethane adhesive derived from modified rubber seed oil and toluene diisocyanates. Advanced Materials Research, 931-932, 52-56.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.931-932.52
327Temna K., Saetung N. and Saetung A. (2014). Preparation and properties of sponge rubber based on natural rubber and cassava starch. Advanced Materials Research, 931-932, 68-72.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.931-932.68
328Saramolee P., Lopattananon N. and Sahakaro K. (2014). Preparation and some properties of modified natural rubber bearing grafted poly(methyl methacrylate) and epoxide groups. European Polymer Journal, 56(1), 1-10.
Cited: 38 doi: https://doi.org/10.1016/j.eurpolymj.2014.04.008
329Teppinta W., Junhasavasdikul B. and Nithi-Uthai N. (2014). Processing of thermoplastic vulcanizates using high speed intermeshing-typed internal mixer: Influence of mixing patterns. Advanced Materials Research, 844, 117-121.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.117
330Walong A., Kaesaman A., Sakai T. and Lopattananon N. (2014). Properties of fire retardant thermoplastic vulcanizates from NR/PP blends filled with Aluminium trihydrate and magnesium hydroxide with reference to the effect of mixing methods. Advanced Materials Research, 844, 297-300.
Cited: 6 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.297
331Hayeemasae N., Ismail H. and Rashid A. (2014). Properties of natural rubber/recycled ethylene-propylene-diene rubber blends prepared using various vulcanizing systems. Iranian Polymer Journal (English Edition), 23(1), 37-45.
Cited: 16 doi: https://doi.org/10.1007/s13726-013-0197-4
332Manleh C., Nakason C., Lopattananon N. and Kaesaman A. (2014). Properties of thermoplastic natural rubber (TPNR): Influence of polypropylene grades on TPNR properties. Advanced Materials Research, 844, 127-130.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.127
333Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2014). Property enhancement of silica-filled natural rubber compatibilized with epoxidized low molecular weight rubber by extra sulfur. Advanced Materials Research, 844, 235-238.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.235
334Lopattananon N., Tanglakwaraskul S., Julyanon J., Masa A. and Sakai T. (2014). Role of nanoclay addition in structural formation of natural rubber based polyblends in MELT-Compounding. Annual Technical Conference - ANTEC, Conference Proceedings, 1(January), 66-71.
Cited: 0
335Thongnuanchan B., Ninjan R., Bunsanong A. and Nakason C. (2014). Room-temperature curing adhesive based on graft copolymers of natural rubber and poly(diacetone acrylamide). Advanced Materials Research, 844, 353-356.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.353
336Sengloyluan K., Sahakaro K. and Noordermeer J. (2014). Silica-reinforced natural rubber compounds compatibilized through the use of epoxide functional groups and TESPT combination. Advanced Materials Research, 844, 272-275.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.272
337Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. European Polymer Journal, 51(1), 69-79.
Cited: 144 doi: https://doi.org/10.1016/j.eurpolymj.2013.12.010
338Hayeemasae N., Ismail H. and Thevy Ratnam C. (2014). Simultaneous Enhancement of Mechanical and Dynamic Mechanical Properties of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends by Electron Beam Irradiation. International Journal of Polymer Analysis and Characterization, 19(3), 272-285.
Cited: 12 doi: https://doi.org/10.1080/1023666X.2014.880023
339Cameron N., Lagrille O., Lovell P. and Thongnuanchan B. (2014). Solution homopolymerizations of n-butyl acrylate and styrene mediated using 2,2,5-trimethyl-4-tert-butyl-3-azahexane-3-oxyl (TITNO). Polymer, 55(3), 772-781.
Cited: 5 doi: https://doi.org/10.1016/j.polymer.2013.12.060
340Toh-Ae P., Junhasavasdikul B., Lopattananon N. and Sahakaro K. (2014). Surface modification of TiO<inf>2</inf> nanoparticles by grafting with silane coupling agent. Advanced Materials Research, 844, 276-279.
Cited: 7 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.276
341Naebpetch W., Junhasavasdikul B., Saetung A., Tulyapitak T. and Nithi-Uthai N. (2014). The influence of zinc dimethacrylate on crosslink density, physical properties and heat aging resistance of sulfur vulcanized styrene butadiene rubber. Advanced Materials Research, 844, 45-48.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.45
342Hayeemasae N., Ismail H. and Azura A. (2014). Thermal stability and aging characteristics of (natural rubber)/(waste ethylene-propylene-diene monomer terpolymer) blends. Journal of Vinyl and Additive Technology, 20(2), 99-107.
Cited: 5 doi: https://doi.org/10.1002/vnl.21334
343Sripornsawat B., Kaesaman A. and Nakason C. (2014). Thermoplastic natural rubber of co-polyamide: Effect of blend ratios on mechanical, swelling, dynamic and morphological properties. Advanced Materials Research, 844, 89-92.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.89
344Kaewsakul W., Dierkes W., Noordermeer J. and Sahakaro K. (2014). Use of disulfide-based silane coupling agents with compensation of sulfur in silica-reinforced natural rubber Compounds. KGK Kautschuk Gummi Kunststoffe, 67(5), 33-39.
Cited: 1
345Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Verification of interactions between silica and epoxidised squalene as a model for epoxidised natural rubber. Journal of Rubber Research, 17(3), 129-142.
Cited: 7
346Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2013). Alternative secondary accelerator for silica-filled natural rubber formulations. KGK Kautschuk Gummi Kunststoffe, 66(9), 33-38.
Cited: 1
347Hayeemasae N., Ismail H. and Azura A. (2013). Blending of Natural Rubber/Recycled Ethylene-Propylene-Diene Monomer: Cure Behaviors and Mechanical Properties. Polymer - Plastics Technology and Engineering, 52(5), 501-509.
Cited: 22 doi: https://doi.org/10.1080/03602559.2012.762020
348Salaeh S., Nakason C., Boiteux G. and Cassagnau P. (2013). Co-continuous phase structure and properties of poly(vinylidenefluoride)/epoxidized natural rubber blends. Advanced Materials Research, 626, 71-74.
Cited: 5 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.71
349Boontawee H., Nakason C., Kaesaman A., Thitithammawong A. and Chewchanwuttiwong S. (2013). Comparative properties of vegetable oil-based benzyl esters and vegetable oils as processing oil in natural rubber compounds. Advanced Materials Research, 626, 237-239.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.237
350Toh-Ae P., Pongprayoon T., Lopattananon N. and Sahakaro K. (2013). Comparison of properties of admicellar polymerization surface modified silica- and conventional fillers-reinforced tyre tread compounds. Asian Journal of Chemistry, 25(9), 5226-5232.
Cited: 3 doi: https://doi.org/10.14233/ajchem.2013.f23
351Hayeemasae N., Ismail H. and Azura A. (2013). Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends. Polymer Testing, 32(4), 631-639.
Cited: 49 doi: https://doi.org/10.1016/j.polymertesting.2013.03.019
352Hayeemasae N., Ismail H. and Azura A. (2013). Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends. Polymer Testing, 32(2), 385-393.
Cited: 73 doi: https://doi.org/10.1016/j.polymertesting.2012.11.003
353Saiwari S., Dierkes W. and Noordermeer J. (2013). Devulcanization of whole passenger car tire material. KGK Kautschuk Gummi Kunststoffe, 66(7-8), 20-25.
Cited: 37
354Sripornsawat B., Nakason C. and Kaesaman A. (2013). Effect of modified natural rubber on properties of thermoplastic natural rubber based on Co-polyamide blends. Advanced Materials Research, 626, 233-236.
Cited: 5 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.233
355Manleh C., Nakason C., Lopattananon N. and Kaesaman A. (2013). Effect of sulfur donor on properties of thermoplastic vulcanizatesbased on NR/PP. Advanced Materials Research, 626, 54-57.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.54
356Hayeemasae N., Ismail H. and Azura A. (2013). Effects of virgin Ethylene-Propylene-Diene-Monomer and its preheating time on the properties of natural rubber/recycled Ethylene-Propylene-Diene-Monomer blends. Materials and Design, 50, 27-37.
Cited: 21 doi: https://doi.org/10.1016/j.matdes.2013.02.086
357Yokkhun P., Thongnuanchan B. and Nakason C. (2013). Fundamental studies on cure characteristics and mechanical properties of nanocomposites based on epoxidized natural rubber (ENR-30) and montmorillonite clay. Advanced Materials Research, 626, 79-84.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.79
358Thitithammawong A., Uthaipan N. and Rungvichaniwat A. (2013). Influence of zinc oxide contents on mechanical, rheological and thermal properties of thermoplastic natural rubber. Advanced Materials Research, 626, 75-78.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.75
359Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2013). Optimization of rubber formulation for silica-reinforced natural rubber compounds. Rubber Chemistry and Technology, 86(2), 313-329.
Cited: 30 doi: https://doi.org/10.5254/RCT.13.87970
360Lopattananon N., Tanglakwaraskul S., Kaesaman A., Seadan M. and Sakai T. (2013). Partially dynamically vulcanized thermoplastic elastomer based on natural rubber-polypropylene-clay nanocomposites. Advanced Materials Research, 747, 230-233.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.747.230
361Petchkaew A., Sahakaro K. and Noordermeer J. (2013). Petroleum-based safe process oils in NR, SBR and their blends: Study on unfilled compounds. Part I. Oil characteristics and solubility aspects. KGK Kautschuk Gummi Kunststoffe, 66(4), 43-47.
Cited: 10
362Petchkaew A., Sahakaro K. and Noordermeer J. (2013). Petroleum-based safe process oils in NR, SBR and their blends: Study on unfilled compounds. Part II. Properties. KGK Kautschuk Gummi Kunststoffe, 66(5), 21-27.
Cited: 8
363Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2013). Silica-reinforced natural rubber with epoxidized low molecular weight rubber as a compatibilizer. Advanced Materials Research, 747, 522-525.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.747.522
364Romin R., Nakason C. and Thitithammawong A. (2013). Thermoplastic elastomer based on epoxidized natural rubber/polyamide-12 and co-polyamide-12 blends. Advanced Materials Research, 626, 58-61.
Cited: 6 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.58
365Sasdipan K., Kaesaman A. and Nakason C. (2013). Thermoplastic natural rubber based on blending of co-polyester: Effectof amount of epoxide groups in epoxidized natural rubber onpreperties. Advanced Materials Research, 626, 50-53.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.50
366Lamlaeh S., Kaesaman A. and Nakason C. (2013). Thermoplastic natural rubber based on blending of maleated natural rubber and copolyester: Effect of blend ratios on mechanical, thermal, dynamic and morphological properties. Advanced Materials Research, 626, 66-70.
Cited: 5 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.66
367Thongnuanchan B., Suwanpetch S. and Nakason C. (2013). Utilization of raw gypsum as hydrated filler in bagasse particleboardbonded with a formaldehyde-free epoxidized natural rubber adhesive. Advanced Materials Research, 626, 44-49.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.44
368Thitithammawong A., Kasoe R. and Nakason C. (2012). A comparative study of the effect of crosslink agents and chemical modification on properties of natural rubber vulcanizates. Advanced Materials Research, 415-417, 2334-2337.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.415-417.2334
369Cameron N., Lagrille O., Lovell P. and Thongnuanchan B. (2012). A nitroxide for effecting controlled nitroxide-mediated adical polymerization at temperatures ?90 ?c. ACS Macro Letters, 1(11), 1262-1265.
Cited: 13 doi: https://doi.org/10.1021/mz300464c
370Boontawee H., Nakason C., Kaesaman A., Thitithammawong A. and Chewchanwuttiwong S. (2012). Application of benzyl ester of modified vegetable oils as rubber processing oils. Advanced Materials Research, 415-417, 1164-1167.
Cited: 9 doi: https://doi.org/10.4028/www.scientific.net/AMR.415-417.1164
371Lopattananon N., Thongpin C. and Sombatsompop N. (2012). Bioplastics from blends of cassava and rice flours: The effect of blend composition. International Polymer Processing, 27(3), 334-340.
Cited: 6 doi: https://doi.org/10.3139/217.2532
372Kaewsakul W., Kaesaman A. and Nakason C. (2012). Dual phase continuity and phase inversion phenomena in natural rubber/ethylene vinyl acetate (EVA) copolymer blends. E-Polymers
Cited: 2 doi: https://doi.org/10.1515/epoly.2012.12.1.47
373Hayeemasae N., Ismail H. and Azura A. (2012). Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. Journal of Vinyl and Additive Technology, 18(2), 139-146.
Cited: 28 doi: https://doi.org/10.1002/vnl.20291
374Thitithammawong A., Kaewsare A. and Nakason C. (2012). Improved properties of CENR/PP blends by using compatibilizers for promoting the interfacial adhesion between phases. Advanced Materials Research, 415-417, 2248-2251.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/AMR.415-417.2248
375Narathichat M., Kummerl?we C., Vennemann N., Sahakaro K. and Nakason C. (2012). Influence of epoxide level and reactive blending on properties of epoxidized natural rubber and nylon-12 blends. Advances in Polymer Technology, 31(2), 118-129.
Cited: 22 doi: https://doi.org/10.1002/adv.20243
376Jarnthong M., Nakason C., Lopattananon N. and Peng Z. (2012). Influence of incorporation sequence of silica nanoparticles on morphology, crystallization behavior, mechanical properties, and thermal resistance of melt blended thermoplastic natural rubber. Polymer Composites, 33(11), 1911-1920.
Cited: 18 doi: https://doi.org/10.1002/pc.22331
377Salaeh S. and Nakason C. (2012). Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polymer Composites, 33(4), 489-500.
Cited: 76 doi: https://doi.org/10.1002/pc.22169
378Johns J., Nakason C., Thitithammawong A. and Klinpituksa P. (2012). Method tovulcanize natural rubber frommedium ammonia latex by using glutaraldehyde. Rubber Chemistry and Technology, 85(4), 565-575.
Cited: 19 doi: https://doi.org/10.5254/rct.12.88920
379Peng Z. and Lopattananon N. (2012). Nano-sized silica reinforcement of epoxidized natural rubber prepared in latex state. Advanced Materials Research, 415-417, 112-115.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/AMR.415-417.112
380Klinpituksa P., Somkieowan S., Waehamad W. and Lopattananon N. (2012). Polymeric antioxidant based on natural rubber grafted with N-(4-hydroxyphenyl)maleimide. Advanced Materials Research, 488-489, 211-215.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.488-489.211
381Thitithammawong A., Ruttanasupa N. and Nakason C. (2012). Preparation and properties of chlorinated epoxidised natural rubber latex and its latex-based adhesive. Journal of Rubber Research, 15(1), 19-34.
Cited: 11
382Myhre M., Saiwari S., Dierkes W. and Noordermeer J. (2012). Rubber Recycling: Chemistry, processing, and applications. Rubber Chemistry and Technology, 85(3), 408-449.
Cited: 111 doi: https://doi.org/10.5254/rct.12.87973
383Kaenhin L., Klinpituksa P., Rungvichaniwat A., Saetung A., Pilard J., Campistron I. and Laguerre A. (2012). Synthesis and characterisation of waterborne polyurethane adhesives from hydroxyl terminated natural rubber. Journal of Rubber Research, 15(4), 217-229.
Cited: 5
384Saetung A., Kaenhin L., Klinpituksa P., Rungvichaniwat A., Tulyapitak T., Munleh S., Campistron I. and Pilard J. (2012). Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. Journal of Applied Polymer Science, 124(4), 2742-2752.
Cited: 41 doi: https://doi.org/10.1002/app.35318
385Thitithammawong A., Uthaipan N. and Rungvichaniwat A. (2012). The effect of the ratios of sulfur to peroxide in mixed vulcanization systems on the properties of dynamic vulcanized natural rubber and polypropylene blends. Songklanakarin Journal of Science and Technology, 34(6), 653-662.
Cited: 10
386Thitithammawong A., Uthaipan N. and Rungvichaniwat A. (2012). The influence of mixed conventional sulfur/peroxide vulcanization systems on the mechanical and thermal properties of natural rubber/polypropylene blends. Journal of Elastomers and Plastics, 44(5), 419-432.
Cited: 8 doi: https://doi.org/10.1177/0095244311432781
387Nakason C., Kaewsakul W. and Kaesaman A. (2012). Thermoplastic natural rubbers based on blending of ethylene-vinyl acetate copolymer with different types of natural rubber. Journal of Elastomers and Plastics, 44(1), 89-111.
Cited: 9 doi: https://doi.org/10.1177/0095244311413441
388Kaenhin L., Klinpituksa P., Rungvichaniwat A. and Pilard J. (2012). Waterborne polyurethane: Effect of functional groups in aromatic isocyanate and the chain length of hydroxyl terminated natural rubber. Advanced Materials Research, 415-417, 2032-2035.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.415-417.2032
389Salaeh S., Muensit N., Bomlai P. and Nakason C. (2011). Ceramic/natural rubber composites: Influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. Journal of Materials Science, 46(6), 1723-1731.
Cited: 35 doi: https://doi.org/10.1007/s10853-010-4990-6
390Sahakaro K. and Beraheng A. (2011). Epoxidized natural oils as the alternative safe process oils in rubber compounds. Rubber Chemistry and Technology, 84(2), 200-214.
Cited: 34 doi: https://doi.org/10.5254/1.3577518
391Lopattananon N., Jitkalong D. and Seadan M. (2011). Hybridized reinforcement of natural rubber with silane-modified short cellulose fibers and silica. Journal of Applied Polymer Science, 120(6), 3242-3254.
Cited: 41 doi: https://doi.org/10.1002/app.33374
392Kaewsakul W., Sahakaro K. and Noordermeer J. (2011). Optimization of mixing conditions for silica-reinforced natural rubber compounds. Chemicke Listy, 105(15 SPEC. ISSUE)
Cited: 0
393Hayeemasae N., Ismail H. and Azura A. (2011). Recycled polyethylene terephthalate filled natural rubber compounds: Effects of filler loading and types of matrix. Journal of Elastomers and Plastics, 43(5), 429-449.
Cited: 29 doi: https://doi.org/10.1177/0095244311405503
394Hayeemasae N., Ismail H. and Azura A. (2011). The influence of recycled poly(ethylene terephthalate) powder on fatigue life, thermal stability, and morphology of Halloysite Nanotubes (HNTs) and precipitated silica filled natural rubber composites. Key Engineering Materials, 471-472, 628-633.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.628
395Hayeemasae N., Ismail H. and Azura A. (2011). The partial replacement of Halloysite Nanotubes (HNTs) and precipitated silica by recycled poly(ethylene terephthalate) powder on cure behavior tensile properties and morphology of natural rubber composites. Key Engineering Materials, 471-472, 622-627.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.622
396Narathichat M., Sahakaro K. and Nakason C. (2010). Assessment degradation of natural rubber by moving die processability test and FTIR spectroscopy. Journal of Applied Polymer Science, 115(3), 1702-1709.
Cited: 25 doi: https://doi.org/10.1002/app.31194
397Saetung A., Rungvichaniwat A., Campistron I., Klinpituksa P., Laguerre A., Phinyocheep P. and Pilard J. (2010). Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: Preliminary study of their potentiality as polyurethane foam precursors. Journal of Applied Polymer Science, 117(3), 1279-1289.
Cited: 39 doi: https://doi.org/10.1002/app.31907
398Kalkornsurapranee E., Sahakaro K., Kaesaman A. and Nakason C. (2010). Influence of reaction volume on the properties of natural rubber-g-methyl methacrylate. Journal of Elastomers and Plastics, 42(1), 17-34.
Cited: 9 doi: https://doi.org/10.1177/0095244309345410
399Sahakaro K., Sengloyluan K. and Noordermeer J. (2010). Mechanical, dynamic and swelling properties of NR/EPDM blends. Gummi, Fasern, Kunststoffe, 63(12), 775-781.
Cited: 0
400Yumae N., Kaesaman A., Rungvichaniwat A., Thepchalerm C. and Nakason C. (2010). Novel creaming agent for preparation of creamed concentrated natural rubber latex. Journal of Elastomers and Plastics, 42(5), 453-470.
Cited: 8 doi: https://doi.org/10.1177/0095244310374227
401Saetung A., Rungvichaniwat A., Campistron I., Klinpituksa P., Laguerre A., Phinyocheep P., Doutres O. and Pilard J. (2010). Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams basedon hydroxytelechelic natural rubber. Journal of Applied Polymer Science, 117(2), 828-837.
Cited: 35 doi: https://doi.org/10.1002/app.31601
402Nakason C., Wohmang T., Kaesaman A. and Kiatkamjornwong S. (2010). Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydrate Polymers, 81(2), 348-357.
Cited: 70 doi: https://doi.org/10.1016/j.carbpol.2010.02.030
403Jarnthong M., Peng Z., Nakason C. and Lopattananon N. (2010). Surface modification of silica nanoparticles for reinforcement of epoxidized natural rubber. Advanced Materials Research, 93-94, 370-376.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.93-94.370
404Payae Y. and Lopattananon N. (2009). Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments. Songklanakarin Journal of Science and Technology, 31(2), 189-194.
Cited: 14
405Nithi-Uthai N. (2009). Extending fatigue life of McKibben artificial muscle actuators. The Minerals, Metals and Materials Society - 3rd International Conference on Processing Materials for Properties 2008, PMP III, 1, 453-456.
Cited: 4
406Kalkornsurapranee E., Sahakaro K., Kaesaman A. and Nakason C. (2009). From a laboratory to a pilot scale production of natural rubber grafted with PMMA. Journal of Applied Polymer Science, 114(1), 587-597.
Cited: 23 doi: https://doi.org/10.1002/app.30529
407Sahakaro K., Pongpaiboon C. and Nakason C. (2009). Improved mechanical properties of NR/EPDM blends by controlling the migration of curative and filler via reactive processing technique. Journal of Applied Polymer Science, 111(4), 2035-2043.
Cited: 9 doi: https://doi.org/10.1002/app.29193
408Pechurai W., Sahakaro K. and Nakason C. (2009). Influence of phenolic curative on crosslink density and other related properties of Dynamically cured NR/HDPE blends. Journal of Applied Polymer Science, 113(2), 1232-1240.
Cited: 18 doi: https://doi.org/10.1002/app.30036
409Nakason C., Jarnthong M., Kaesaman A. and Kiatkamjornwong S. (2009). Influences of blend proportions and curing systems on dynamic, mechanical, and morphological properties of dynamically cured epoxidized natural rubber/high-density polyethylene blends. Polymer Engineering and Science, 49(2), 281-292.
Cited: 26 doi: https://doi.org/10.1002/pen.21256
410Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2009). Multifunctional peroxide as alternative crosslink agents for dynamically vulcanized epoxidized natural rubber/polypropylene blends. Journal of Applied Polymer Science, 111(2), 819-825.
Cited: 11 doi: https://doi.org/10.1002/app.29129
411Saijun D., Nakason C., Kaesaman A. and Klinpituksa P. (2009). Water absorption and mechanical properties of water-swellable natural rubber. Songklanakarin Journal of Science and Technology, 31(5), 561-565.
Cited: 32
412Boonsong K., Seadan M. and Lopattananon N. (2008). Compatibilization of natural rubber (NR) and chlorosulfonated polyethylene (CSM) blends with zinc salts of sulfonated natural rubber. Songklanakarin Journal of Science and Technology, 30(4), 491-499.
Cited: 9
413Nakason C. and Saiwari S. (2008). Effect of grafted maleic anhydride content and recyclability of dynamically cured maleated natural rubber/polypropylene blends. Journal of Applied Polymer Science, 110(6), 4071-4078.
Cited: 15 doi: https://doi.org/10.1002/app.29070
414Nakason C., Worlee A. and Salaeh S. (2008). Effect of vulcanization systems on properties and recyclability of dynamically cured epoxidized natural rubber/polypropylene blends. Polymer Testing, 27(7), 858-869.
Cited: 56 doi: https://doi.org/10.1016/j.polymertesting.2008.06.011
415Sahakaro K. and Pantupon N. (2008). Improving the mechanical properties of ENR/NBR blends via masterbatches with initial accelerator concentration gradients. International Polymer Processing, 23(2), 141-145.
Cited: 1 doi: https://doi.org/10.3139/217.2020
416Thitithammawong A., Noordermeer J., Kaesaman A. and Nakason C. (2008). Influence of compatibilizers on the rheological, mechanical, and morphological properties of epoxidized natural rubber/polypropylene thermoplastic vulcanizates. Journal of Applied Polymer Science, 107(4), 2436-2443.
Cited: 27 doi: https://doi.org/10.1002/app.27233
417Lopattananon N., Payae Y. and Seadan M. (2008). Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. Journal of Applied Polymer Science, 110(1), 433-443.
Cited: 51 doi: https://doi.org/10.1002/app.28496
418Pichaiyut S., Nakason C., Kaesaman A. and Kiatkamjornwong S. (2008). Influences of blend compatibilizers on dynamic, mechanical, and morphological properties of dynamically cured maleated natural rubber and high-density polyethylene blends. Polymer Testing, 27(5), 566-580.
Cited: 35 doi: https://doi.org/10.1016/j.polymertesting.2008.03.004
419Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2008). Reactive blending, reinforcement and curing of NR/BR/EPDM compounds for tyre sidewall applications. Gummi, Fasern, Kunststoffe, 61(3), 163-176.
Cited: 0
420Sahakaro K. and Beraheng S. (2008). Reinforcement of maleated natural rubber by precipitated silica. Journal of Applied Polymer Science, 109(6), 3839-3848.
Cited: 49 doi: https://doi.org/10.1002/app.28483
421Nakason C., Jamjinno S., Kaesaman A. and Kiatkamjornwong S. (2008). Thermoplastic elastomer based on high-density polyethylene/natural rubber blends: Rheological, thermal, and morphological properties. Polymers for Advanced Technologies, 19(2), 85-98.
Cited: 19 doi: https://doi.org/10.1002/pat.972
422Nakason C., Jarnthong M., Kaesaman A. and Kiatkamjornwong S. (2008). Thermoplastic elastomers based on epoxidized natural rubber and high-density polyethylene blends: Effect of blend compatibilizers on the mechanical and morphological properties. Journal of Applied Polymer Science, 109(4), 2694-2702.
Cited: 29 doi: https://doi.org/10.1002/app.28265
423Pechurai W., Nakason C. and Sahakaro K. (2008). Thermoplastic natural rubber based on oil extended NR and HDPE blends: Blend compatibilizer, phase inversion composition and mechanical properties. Polymer Testing, 27(5), 621-631.
Cited: 30 doi: https://doi.org/10.1016/j.polymertesting.2008.04.001
424Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. I. Preparation, cure characteristics and mechanical properties. Journal of Applied Polymer Science, 103(4), 2538-2546.
Cited: 17 doi: https://doi.org/10.1002/app.25088
425Sahakaro K., Talma A., Datta R. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. II. Characterization. Journal of Applied Polymer Science, 103(4), 2547-2554.
Cited: 11 doi: https://doi.org/10.1002/app.25113
426Sahakaro K., Datta R., Baaij J. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. III. Assessment of the blend ozone- And fatigue-resistance in comparison with a conventional NR/BR compound. Journal of Applied Polymer Science, 103(4), 2555-2563.
Cited: 17 doi: https://doi.org/10.1002/app.25101
427Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends. Polymer Testing, 26(4), 537-546.
Cited: 69 doi: https://doi.org/10.1016/j.polymertesting.2007.02.002
428Lopattananon N., Boonsong K. and Seadan M. (2007). Effects of zinc salts of sulfonated natural rubber on mechanical properties, morphology and compatibility of natural rubber/chlorosulfonated polyethylene blends. International Polymer Processing, 22(4), 359-367.
Cited: 0 doi: https://doi.org/10.3139/217.2011
429Thongnuanchan B., Nokkaew K., Kaesaman A. and Nakason C. (2007). Epoxidized natural rubber-bonded para rubber wood particleboard. Polymer Engineering and Science, 47(4), 421-428.
Cited: 22 doi: https://doi.org/10.1002/pen.20668
430Lopattananon N., Kraibut A., Sangjan R. and Seadan M. (2007). Ionic elastomer blends of zinc salts of maleated natural rubber and carboxylated nitrile rubber: Effect of grafted maleic anhydride. Journal of Applied Polymer Science, 105(3), 1444-1455.
Cited: 9 doi: https://doi.org/10.1002/app.26312
431Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). NR/PP thermoplastic vulcanizates: Selection of optimal peroxide type and concentration in relation to mixing conditions. Journal of Applied Polymer Science, 106(4), 2204-2209.
Cited: 30 doi: https://doi.org/10.1002/app.25935
432Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2007). Reactive blending, reinforcement and curing of NR/BR/EPDM compounds for tire sidewall applications. Rubber Chemistry and Technology, 80(1), 115-138.
Cited: 8 doi: https://doi.org/10.5254/1.3548160
433Lohakul A., Kaesaman A., Rungvichaniwat A. and Nakason C. (2007). Rheological properties of calcium carbonate-epoxidized natural rubber composites prepared in latex state. E-Polymers, 1-11.
Cited: 1 doi: https://doi.org/10.1515/epoly.2007.7.1.78
434Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: Selection of optimal peroxide type and concentration in relation to mixing conditions. European Polymer Journal, 43(9), 4008-4018.
Cited: 34 doi: https://doi.org/10.1016/j.eurpolymj.2007.06.035
435Nakason C., Nuansomsri K., Kaesaman A. and Kiatkamjornwong S. (2006). Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polymer Testing, 25(6), 782-796.
Cited: 73 doi: https://doi.org/10.1016/j.polymertesting.2006.05.001
436Nakason C., Wannavilai P. and Kaesaman A. (2006). Effect of vulcanization system on properties of thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends. Polymer Testing, 25(1), 34-41.
Cited: 103 doi: https://doi.org/10.1016/j.polymertesting.2005.09.007
437Lopattananon N., Panawarangkul K., Sahakaro K. and Ellis B. (2006). Performance of pineapple leaf fiber-natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 102(2), 1974-1984.
Cited: 147 doi: https://doi.org/10.1002/app.24584
438Nakason C., Saiwari S. and Kaesaman A. (2006). Rheological properties of maleated natural rubber/polypropylene blends with phenolic modified polypropylene and polypropylene-g-maleic anhydride compatibilizers. Polymer Testing, 25(3), 413-423.
Cited: 60 doi: https://doi.org/10.1016/j.polymertesting.2005.11.006
439Nakason C., Saiwari S., Tatun S. and Kaesaman A. (2006). Rheological, thermal and morphological properties of maleated natural rubber and its reactive blending with poly(methyl methacrylate). Polymer Testing, 25(5), 656-667.
Cited: 72 doi: https://doi.org/10.1016/j.polymertesting.2006.03.011
440Nakason C., Pechurai W., Sahakaro K. and Kaesaman A. (2006). Rheological, thermal, and curing properties of natural rubber-g-poly(methyl methacrylate). Journal of Applied Polymer Science, 99(4), 1600-1614.
Cited: 25 doi: https://doi.org/10.1002/app.22518
441Nakason C., Wannavilai P. and Kaesaman A. (2006). Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: Effect of compatibilizers and reactive blending. Journal of Applied Polymer Science, 100(6), 4729-4740.
Cited: 45 doi: https://doi.org/10.1002/app.23260
442Nakason C., Wannavilai P. and Kaesaman A. (2006). Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: Effect of epoxide levels in ENR molecules. Journal of Applied Polymer Science, 101(5), 3046-3052.
Cited: 23 doi: https://doi.org/10.1002/app.23926
443Nakason C., Saiwari S. and Kaesaman A. (2006). Thermoplastic vulcanizates based on maleated natural rubber/polypropylene blends: Effect of blend ratios on rheological, mechanical, and morphological properties. Polymer Engineering and Science, 46(5), 594-600.
Cited: 31 doi: https://doi.org/10.1002/pen.20498
444Nakason C., Kaesaman A. and Eardrod K. (2005). Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds. Materials Letters, 59(29-30), 4020-4025.
Cited: 64 doi: https://doi.org/10.1016/j.matlet.2005.07.057
445Nakason C., Pechurai W., Sahakaro K. and Kaesaman A. (2005). Rheological, mechanical and morphological properties of thermoplastic vulcanizates based on NR-g-PMMA/PMMA blends. Polymers for Advanced Technologies, 16(8), 592-599.
Cited: 26 doi: https://doi.org/10.1002/pat.634
446Nakason C., Tobprakhon A. and Kaesaman A. (2005). Thermoplastic vulcanizates based on poly(methyl methacrylate)/epoxidized natural rubber blends: Mechanical, thermal, and morphological properties. Journal of Applied Polymer Science, 98(3), 1251-1261.
Cited: 25 doi: https://doi.org/10.1002/app.21908
447Kovuttikulrangsie S., Sahakaro K., Intarakong C. and Klinpituksa P. (2004). PMMA blended and DPNR-g-PMMA coated DPNR and NR-LA for dipping applications. Journal of Applied Polymer Science, 93(2), 833-844.
Cited: 8 doi: https://doi.org/10.1002/app.20535
448Nakason C., Panklieng Y. and Kaesaman A. (2004). Rheological and thermal properties of thermoplastic natural rubbers based on poly(methyl methacrylate)/epoxidized-natural-rubber blends. Journal of Applied Polymer Science, 92(6), 3561-3572.
Cited: 37 doi: https://doi.org/10.1002/app.20384
449Nakason C., Kaesaman A., Sainamsai W. and Kiatkamjornwong S. (2004). Rheological behavior of reactive blending of epoxidized natural rubber with cassava starch and epoxidized natural rubber with natural rubber and cassava starch. Journal of Applied Polymer Science, 91(3), 1752-1762.
Cited: 13 doi: https://doi.org/10.1002/app.13248
450Nakason C., Kaesaman A. and Supasanthitikul P. (2004). The grafting of maleic anhydride onto natural rubber. Polymer Testing, 23(1), 35-41.
Cited: 164 doi: https://doi.org/10.1016/S0142-9418(03)00059-X
451Nithi-Uthai N. and Manas-Zloczower I. (2003). Numerical simulation of sharkskin phenomena in polymer melts. Applied Rheology, 13(2), 79-86.
Cited: 4 doi: https://doi.org/10.1515/arh-2003-0006
452Nakason C., Kaesaman A. and Yimwan N. (2003). Preparation of graft copolymers from deproteinized and high ammonia concentrated natural rubber latices with methyl methacrylate. Journal of Applied Polymer Science, 87(1 SPEC.), 68-75.
Cited: 43 doi: https://doi.org/10.1002/app.11671
453Nakason C., Kaesaman A., Rungvichaniwat A., Eardrod K. and Kiatkamjornwong S. (2003). Rheological and curing behavior of reactive blending. II. Natural rubber-g-poly(methyl methacrylate)-cassava starch. Journal of Applied Polymer Science, 89(6), 1453-1463.
Cited: 24 doi: https://doi.org/10.1002/app.12191
454Nithi-Uthai N. and Manas-Zloczower I. (2002). Numerical studies of the effect of constitutive model parameters as reflecting polymer molecular structure on extrudate swell. Applied Rheology, 12(5), 252-259.
Cited: 3 doi: https://doi.org/10.1515/arh-2002-0014
455Nakason C., Kaesaman A., Samoh Z., Homsin S. and Kiatkamjornwong S. (2002). Rheological properties of maleated natural rubber and natural rubber blends. Polymer Testing, 21(4), 449-455.
Cited: 58 doi: https://doi.org/10.1016/S0142-9418(01)00109-X
456Lopattananon N., Hayes S. and Jones F. (2002). Stress transfer function for interface assessment in composites with plasma copolymer functionalized carbon fibres. Journal of Adhesion, 78(4), 313-350.
Cited: 20 doi: https://doi.org/10.1080/00218460210935
457Heath R. and Rungvichaniwat A. (2002). The examination of the structure property relationships of some water-dispersed polyurethane elastomers. Progress in Rubber, Plastics and Recycling Technology, 18(1), 1-47.
Cited: 2 doi: https://doi.org/10.1177/147776060201800101
458Gosden R., Sahakaro K., Johnson A., Chen J., Li R., Nazir T. and Mesz?na Z. (2001). Living polymerisation reactors: Molecular weight distribution control using inverse neural network models. Polymer Reaction Engineering, 9(4), 249-270.
Cited: 10 doi: https://doi.org/10.1081/PRE-100107509
459Nakason C., Kaesaman A., Wongkul T. and Kiatkamjornwong S. (2001). Rheological and curing properties of reactive blending products of epoxidised natural rubber and cassava starch. Plastics, Rubber and Composites Processing and Applications, 30(4), 154-161.
Cited: 16 doi: https://doi.org/10.1179/146580101101541570
460Syme V., Lamb D., Lopattananon N., Ellis B. and Jones F. (2001). The effect of powder/liquid mixing ratio on the stiffness and impact strength of autopolymerising dental acrylic resins.. The European journal of prosthodontics and restorative dentistry, 9(2), 87-91.
Cited: 3
461Sahakaro K., Chaibundit C., Kaligradaki Z., Mai S., Heatley F., Booth C., Padget J. and Shirley I. (2000). Clouding of aqueous solutions of difunctional tapered-statistical copolymers of ethylene oxide and 1,2-butylene oxide. European Polymer Journal, 36(9), 1835-1842.
Cited: 16 doi: https://doi.org/10.1016/S0014-3057(99)00254-2
462Lopattananon N., Kettle A., Tripathi D., Beck A., Duval E., France R., Short R. and Jones F. (1999). Interface molecular engineering of carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 30(1), 49-57.
Cited: 53 doi: https://doi.org/10.1016/S1359-835X(98)00109-2
463Tripathi D., Lopattananon N. and Jones F. (1998). A technological solution to the testing and data reduction of single fibre fragmentation tests. Composites Part A: Applied Science and Manufacturing, 29(9-10), 1099-1109.
Cited: 34 doi: https://doi.org/10.1016/S1359-835X(98)00076-1
รวม Scopus 463 รายการ 4,944 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th