SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)

กรอง
ช่วงปี
ถึง
ตาราง ผลงานตีพิมพ์ Scopus ปี 2023 หน่วยงาน เทคโนโลยียางฯ
ลำดับรายละเอียดผลงาน
1Le H., Hoang T., Haider S., Subhradeep M., Reuter U., Dhakal K., Adhikari R., Reincke K., Salaeh S. and Wie?ner S. (2023). A new testing strategy based on the wetting concept for characterizing rubber-filler interaction in rubber compounds and its application to the study of the influence of epoxy groups and non-rubber components on rubber-filler interaction in natural rubber compounds. Express Polymer Letters, 17(5), 527-545.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.39
2Tsupphayakorn-Aek P., Suwan A., Chaisit T., Tulyapitak T., Phinyocheep P., Pilard J., Saetung N. and Saetung A. (2023). A new UV-curable biodegradable waterborne polyurethane-acrylate based on natural rubber blended with cassava starch. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53787
3Mohd Sani N., Majid N., Rehman A., Hayeemasae N., Radhakrishnan S., Kulkarni M. and Khimi R. (2023). A review of the recent development in self-healing rubbers and their quantification methods. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606231200952
4Masa A., Jehsoh N., Dueramae S. and Hayeemasae N. (2023). Boosting the Antibacterial Performance of Natural Rubber Latex Foam by Introducing Silver-Doped Zinc Oxide. Polymers, 15(4)
Cited: 0 doi: https://doi.org/10.3390/polym15041040
5Wahab N., Samsudin D., Jamaluddin S., Ahmad Z., Mustafa M., Sarip M., Hayeemasae N. and Saiwari S. (2023). Characterization and Tensile Properties of Self-healing Chitin-Devulcanized Ethylene Propylene Rubber (EPDM)—Waste Natural Rubber Blend. Springer Proceedings in Materials, 24, 265-277.
Cited: 0 doi: https://doi.org/10.1007/978-981-99-2015-0_21
6Hayeemasae N., Salleh S. and Ismail H. (2023). Chloroprene rubber waste as blend component with natural rubber, epoxidized natural rubber, and styrene butadiene rubber. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 271-289.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_13
7Hayeemasae N. and Ismail H. (2023). Comparative studies of natural rubber/virgin ethylene propylene diene rubber and natural rubber/recycled ethylene propylene diene rubber and natural rubber/blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 179-207.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_9
8Hayeemasae N. and Ismail H. (2023). Compatibilization of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 227-254.
Cited: 1 doi: https://doi.org/10.1007/978-3-031-37046-5_11
9Kraibut A., Saiwari S., Kaewsakul W., Noordermeer J., Sahakaro K. and Dierkes W. (2023). Dynamic Response and Molecular Chain Modifications Associated with Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds. Polymers, 15(1)
Cited: 0 doi: https://doi.org/10.3390/polym15010160
10Hayeemasae N., Salleh S. and Ismail H. (2023). Effect of metal oxide content on the mechanical and thermal properties of natural rubber/recycled chloroprene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 255-269.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_12
11Mohd Sani N., Thajudin N., Hayeemasae N. and Raa Khimi S. (2023). Effect of Zn<sup>2+</sup> salt bonding on thermo-reversible self-healing natural rubber. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53924
12Salprima Y., Banon C., Falahudin A., Reagen M., Mohd Kaus N. and Salaeh S. (2023). Fabrication of Silver-Silica Composite using the Carbo-thermal Degradation of Oil Palm Leaves for the Reduction of p-nitrophenol. International Journal of Technology, 14(2), 290-299.
Cited: 0 doi: https://doi.org/10.14716/ijtech.v14i2.5608
13Jaratrotkamjorn R., Hayeemasae N., Zakaria Z. and Masa A. (2023). Influence of acid concentration on thermomechanical, tensile and thermal properties of cyclized natural rubber. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443231173827
14Kaesaman A., Romin R. and Nakason C. (2023). Influence of epoxide content and blend ratios on strength and damping properties of thermoplastic vulcanizates based on epoxidized natural rubber and poly(ether-block-amide) copolymer blends. Express Polymer Letters, 17(10), 1056-1069.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.79
15Kaesaman A., Lamleah S. and Nakason C. (2023). Influence of vulcanization system on curing, mechanical, dynamic and morphological properties of maleated natural rubber and its thermoplastic vulcanizate with thermoplastic copolyester elastomer. Express Polymer Letters, 17(7), 675-689.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.50
16Masa A., Jehsoh N., Saiwari S., Dueramae S. and Hayeemasae N. (2023). Microwave-assisted silver-doped zinc oxide towards antibacterial and mechanical performances of natural rubber latex film. Materials Today Communications, 34
Cited: 0 doi: https://doi.org/10.1016/j.mtcomm.2023.105475
17Suwan A., Srichai K., Sukhawipat N., Pasetto P., Saetung A. and Saetung N. (2023). New waterborne polyurethane/silica hybrid dispersions based on natural rubber and prepared by sol-gel process: Effects of amino alkoxy-silane and nano-silica contents on dispersion stability and films properties. Progress in Organic Coatings, 184
Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2023.107835
18Surya I., Marpongahtun n. and Hayeemasae N. (2023). Oleamide as palm-oil based substance for silica-loaded styrene butadiene rubber compound: The cure and crosslinks behaviors. IOP Conference Series: Earth and Environmental Science, 1241(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1241/1/012096
19Hayeemasae N. and Ismail H. (2023). Optimization of accelerators on the properties of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 209-226.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_10
20Mohamed N., Nadras O., Raa Khimi S. and Hayeemasae N. (2023). Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iranian Polymer Journal (English Edition)
Cited: 0 doi: https://doi.org/10.1007/s13726-023-01203-7
21Masa A., Songkhla, Worlee A., Pattani, Matchawet S., Yala and Hayeemasae N. (2023). Property Enhancement of NR/ Halloysite Nanotubes Composites by Introducing dual Modification. KGK Kautschuk Gummi Kunststoffe, 76(1), 54-60.
Cited: 0
22Kassim M., Mohd Kaus N., Imam S., Sagadevan S. and Salaeh S. (2023). Rapid and facile chemical synthesis of Fe<inf>3</inf>O<inf>4</inf>/biochar nanocomposite for the adsorptive removal of fluoroquinolones from aqueous solution. Inorganic Chemistry Communications, 156
Cited: 0 doi: https://doi.org/10.1016/j.inoche.2023.111156
23Wongvasana B., Thongnuanchan B., Masa A., Saito H., Sakai T. and Lopattananon N. (2023). Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites. Polymers, 15(5)
Cited: 0 doi: https://doi.org/10.3390/polym15051274
24Razuki A., Haida Mohd Kaus N., Sagadevann S., Salaeh S., Lokman Ibrahim M. and Mustaffa Al Bakri Abdullah M. (2023). Revolutionizing biodiesel production: A breakthrough synthesis and characterization of bismuth ferrite nanocatalysts for transesterification of palm and waste cooking oil. Fuel, 346
Cited: 0 doi: https://doi.org/10.1016/j.fuel.2023.128413
25Kao-Ian P., Banerjee S., Yudha S S. and Salaeh S. (2023). Strengthened Poly(vinylidene fluoride)/Epoxidized Natural Rubber Blend by a Reactive Compatibilizer Based on an Amino Acid-Modified Fluorocarbon Elastomer. Industrial and Engineering Chemistry Research
Cited: 0 doi: https://doi.org/10.1021/acs.iecr.3c04672
26Wongvasana B., Thongnuanchan B., Masa A., Saito H., Sakai T. and Lopattananon N. (2023). Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers. Polymers, 15(21)
Cited: 0 doi: https://doi.org/10.3390/polym15214223
27Hayeemasae N., Viet C., Masa A., Raa Khimi S., Ismail H. and Surya I. (2023). The Use of Kenaf Fibre as a Natural Anti-Degradant in Recycled High-Density Polyethylene and Natural Rubber-Based Thermoplastic Elastomers. Polymers, 15(5)
Cited: 0 doi: https://doi.org/10.3390/polym15051237
28Salaeh S., Thongnuanchan B., Bueraheng Y., Das A., Mohd Kaus N. and Wiessner S. (2023). The utilization of glycerol and xylitol in bio-based vitrimer-like elastomer: Toward more environmentally friendly recyclable and thermally healable crosslinked rubber. European Polymer Journal, 198
Cited: 0 doi: https://doi.org/10.1016/j.eurpolymj.2023.112422
29Sripornsawat B., Georgopoulou A., Tulaphol S., Thitithammawong A., Johns J., Nakaramontri Y. and Clemens F. (2023). Use of modified deep eutectic solvent as an additional chemical in a flexible conductive natural rubber sensor for motion analysis. Express Polymer Letters, 17(1), 69-89.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.6
รวม Scopus 29 รายการ 1 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th