SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)

กรอง
ช่วงปี
ถึง
ตาราง ผลงานตีพิมพ์ WoS/ISI ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1Usmanbaha, N., Sani, K., Jariyaboon, R., Raketh, M., -Thong, S. and Kongjan, P. (2025). Co-digestion of palm oil mill effluent and Ceratophyllum demersum in a two-stage anaerobic bioreactor to recovering gaseous biofuel. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 97, 1375-1385.
Cited: 0 doi: https://doi.org/10.1016/j.ijhydene.2024.12.007
2Wongfaed, N., Sittijunda, S., O-Thong, S., Kongjan, P., Jariyaboon, R., Plangklang, P. and Reungsang, A. (2025). Enhancement of dark fermentative hydrogen production using metal-modified biochar from sugarcane residues: Optimization, characterization, and metabolic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 380
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2025.125047
3Mukherjee, T., Senevirathne, N., Kongjan, P. and Kaparaju, P. (2024). Effect of Temperature and Inoculum-to-Substrate Ratios on Two-Stage Biohydrogen and Methane Production from Sugarcane Molasses. ENERGY & FUELS, 38(24), 23560-23575.
Cited: 0 doi: https://doi.org/10.1021/acs.energyfuels.4c04248
4Raketh, M., Kongjan, P., O-Thong, S., Mamimin, C., Jariyaboon, R. and Promnuan, K. (2024). Life cycle assessment (LCA) and economic analysis of two-stage anaerobic process of co-digesting palm oil mill effluent (POME) with concentrated latex wastewater (CLW) for biogas production. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 192, 450-459.
Cited: 3 doi: https://doi.org/10.1016/j.psep.2024.10.079
5Saeed, Z., Cheirsilp, B., Maneechote, W., Kongjan, P. and Jariyaboon, R. (2024). Optimizing bioencapsulation of yeast cells by Aspergillus tubingensis TSIP9 and applications in bioethanol production through repeated-batch fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 61
Cited: 1 doi: https://doi.org/10.1016/j.bcab.2024.103377
6Chanthong, S., Kongjan, P., Jariyaboon, R. and O-Thong, S. (2024). Synergistic integration of hydrothermal pretreatment and co-digestion for enhanced biogas production from empty fruit bunches in high solids anaerobic digestion. HELIYON, 10(15)
Cited: 1 doi: https://doi.org/10.1016/j.heliyon.2024.e34817
7Manmeen, A., Kongjan, P., Palamanit, A. and Jariyaboon, R. (2023). Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. INDUSTRIAL CROPS AND PRODUCTS, 203
Cited: 19 doi: https://doi.org/10.1016/j.indcrop.2023.117162
8Manmeen, A., Kongjan, P., Rattanaya, T., Cheirsilp, B., Raybut, N. and Jariyaboon, R. (2023). Desulfurization of H2S-rich biogas using water scrubbing: Performance in pilot scale scrubber and scale-up estimation for the concentrated latex factory. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 42(3)
Cited: 3 doi: https://doi.org/10.1002/ep.14034
9Raketh, M., Kongjan, P., Trably, E., Samahae, N. and Jariyaboon, R. (2023). Effect of organic loading rate and effluent recirculation on biogas production of desulfated skim latex serum using up-flow anaerobic sludge blanket reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 327
Cited: 5 doi: https://doi.org/10.1016/j.jenvman.2022.116886
10Raketh, M., Kana, R., Kongjan, P., Muhammad, SAF., O-Thong, S., Mamimin, C. and Jariyaboon, R. (2023). Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 346
Cited: 2 doi: https://doi.org/10.1016/j.jenvman.2023.119031
11Khaonuan, S., Jariyaboon, R., Usmanbaha, N., Cheirsilp, B., Birkeland, NK. and Kongjan, P. (2023). Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation. BIOTECHNOLOGY JOURNAL, 18(10)
Cited: 0 doi: https://doi.org/10.1002/biot.202300026
12Manmeen, A., Kongjan, P., Palamanit, A. and Jariyaboon, R. (2023). The biochar, and pyrolysis liquid characteristics, of three indigenous durian peel; Monthong, Puangmanee, and Bacho. BIOMASS & BIOENERGY, 174
Cited: 8 doi: https://doi.org/10.1016/j.biombioe.2023.106816
13Jariyaboon, R., Hayeeyunu, S., Usmanbaha, N., Bin Ismail, S., O-Thong, S., Mamimin, C. and Kongjan, P. (2023). Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. FERMENTATION-BASEL, 9(7)
Cited: 11 doi: https://doi.org/10.3390/fermentation9070636
14Baidugem, S., Kongjan, P., Sani, K., Raketh, M., Saraluck, S., Chotisuwan, S. and Jariyaboon, R. (2023). Treatment and recycling of condensate wastewater for by-product production process of canned tuna factory: batch and continuous adsorption in a real production plant. DESALINATION AND WATER TREATMENT, 311, 175-187.
Cited: 0 doi: https://doi.org/10.5004/dwt.2023.29974
15Rattanaya, T., Kongjan, P., Cheewasedtham, C., Bunyakan, C., Yuso, P., Cheirsilp, B. and Jariyaboon, R. (2022). Application of palm oil mill waste to enhance biogas upgrading and hornwort cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 309
Cited: 5 doi: https://doi.org/10.1016/j.jenvman.2022.114678
16Raketh, M., Kongjan, P., Sani, K., Trably, E., Cheirsilp, B. and Jariyaboon, R. (2022). Biodegradation efficiencies and economic feasibility of single-stage and two-stage anaerobic digestion of desulfated Skim Latex Serum (SLS) by using rubber wood ash. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 162, 721-732.
Cited: 10 doi: https://doi.org/10.1016/j.psep.2022.04.043
17Kongjan, P., Tohlang, N., Khaonuan, S., Cheirsilp, B. and Jariyaboon, R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. BIOCHEMICAL ENGINEERING JOURNAL, 182
Cited: 8 doi: https://doi.org/10.1016/j.bej.2022.108437
18Sani, K., Jariyaboon, R., O-Thong, S., Cheirsilp, B., Kaparaju, P., Raketh, M. and Kongjan, P. (2022). Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 316
Cited: 4 doi: https://doi.org/10.1016/j.jenvman.2022.115307
19Sittijunda, S., Baka, S., Jariyaboon, R., Reungsang, A., Imai, T. and Kongjan, P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. FERMENTATION-BASEL, 8(10)
Cited: 8 doi: https://doi.org/10.3390/fermentation8100537
20Sani, K., Jariyaboon, R., O-Thong, S., Cheirsilp, B., Kaparaju, P., Wang, Y. and Kongjan, P. (2022). Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. WATER RESEARCH, 221
Cited: 17 doi: https://doi.org/10.1016/j.watres.2022.118736
21Sripitak, B., Jariyaboon, R., Raketh, M., Reungsang, A., Mamimin, C., O-Thong, S. and Kongjan, P. (2022). The Three-stage High Solid Anaerobic Digestion (TSHS- AD) under Ambient Temperature for Enhanced Biogas Production from Cow Manure. CHIANG MAI JOURNAL OF SCIENCE, 49(5), 1273-1295.
Cited: 0 doi: https://doi.org/10.12982/CMJS.2022.078
22Wang, Y., Jing, YY., Lu, CY., Kongjan, P., Wang, J., Awasthi, MK., Tahir, N. and Zhang, QG. (2021). A syntrophic co-fermentation model for bio-hydrogen production. JOURNAL OF CLEANER PRODUCTION, 317
Cited: 36 doi: https://doi.org/10.1016/j.jclepro.2021.128288
23Sani, K., Kongjan, P., Pakhathirathien, C., Cheirsilp, B., O-Thong, S., Raketh, M., Kana, R. and Jariyaboon, R. (2021). Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. JOURNAL OF WATER PROCESS ENGINEERING, 39
Cited: 20 doi: https://doi.org/10.1016/j.jwpe.2020.101661
24Prasertsan, P., Leamdum, C., Chantong, S., Mamimin, C., Kongjan, P. and O-Thong, S. (2021). Enhanced biogas production by co-digestion of crude glycerol and ethanol with palm oil mill effluent and microbial community analysis. BIOMASS & BIOENERGY, 148
Cited: 25 doi: https://doi.org/10.1016/j.biombioe.2021.106037
25Raketh, M., Jariyaboon, R., Kongjan, P., Trably, E., Reungsang, A., Sripitak, B. and Chotisuwan, S. (2021). Sulfate removal using rubber wood ash to enhance biogas production from sulfate-rich wastewater generated from a concentrated latex factory. BIOCHEMICAL ENGINEERING JOURNAL, 173
Cited: 21 doi: https://doi.org/10.1016/j.bej.2021.108084
26Rattanaya, T., Manmeen, A., Kongjan, P., Bunyakan, C., Reungsang, A., Prasertsit, K., Lombardi, L. and Jariyaboon, R. (2021). Upgrading biogas to biomethane using untreated groundwater-NaOH absorbent: Pilot-scale experiment and scale-up estimation for a palm oil mill. JOURNAL OF WATER PROCESS ENGINEERING, 44
Cited: 5 doi: https://doi.org/10.1016/j.jwpe.2021.102405
27Wijaya, AS., Jariyaboon, R., Reungsang, A. and Kongjan, P. (2020). Biochemical Methane Potential (BMP) of Cattle Manure, Chicken Manure, Rice Straw, and Hornwort in Mesophilic Mono-digestion. INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 12(3), 1-8.
Cited: 11 doi: https://doi.org/10.30880/ijie.2020.12.03.001
28Suksong, W., Tukanghan, W., Promnuan, K., Kongjan, P., Reungsang, A., Insam, H. and O-Thong, S. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 296
Cited: 35 doi: https://doi.org/10.1016/j.biortech.2019.122304
29Zulkifli, Z., Rasit, N., Siddique, MNI. and Kongjan, P. (2020). Dry mesophilic and thermophilic semi-continuous anaerobic digestion of cow manure: effects of solid loading rate on the process performance. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 10(4), 5972-5977.
Cited: 2 doi: https://doi.org/10.33263/BRIAC104.972977
30Wongfaed, N., Kongjan, P., Prasertsan, P. and O-Thong, S. (2020). Effect of oil and derivative in palm oil mill effluent on the process imbalance of biogas production. JOURNAL OF CLEANER PRODUCTION, 247
Cited: 20 doi: https://doi.org/10.1016/j.jclepro.2019.119110
31Suksong, W., Wongfaed, N., Sangsri, B., Kongjan, P., Prasertsan, P., Podmirseg, SM., Insam, H. and O-Thong, S. (2020). Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. INDUSTRIAL CROPS AND PRODUCTS, 145
Cited: 26 doi: https://doi.org/10.1016/j.indcrop.2020.112099
32Sunarno, JN., Prasertsan, P., Duangsuwan, W., Kongjan, P. and Cheirsilp, B. (2020). Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. BIOCHEMICAL ENGINEERING JOURNAL, 155
Cited: 17 doi: https://doi.org/10.1016/j.bej.2019.107471
33Promnuan, K., Higuchi, T., Imai, T., Kongjan, P., Reungsang, A. and O-Thong, S. (2020). Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 45(1), 263-274.
Cited: 25 doi: https://doi.org/10.1016/j.ijhydene.2019.10.237
34O-Thong, S., Mamimin, C., Kongjan, P. and Reungsang, A. (2020). Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. ADVANCES IN BIOENERGY, VOL. 5, 5, 249-308.
Cited: 5 doi: https://doi.org/10.1016/bs.aibe.2020.04.007
35Rattanaya, T., Kongjan, P., Bunyakan, C., Reungsang, A. and Jariyaboon, R. (2020). Upgrading biogas to biomethane: Alkaline recovery of absorbed solution by thermal decomposition. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 138, 157-166.
Cited: 15 doi: https://doi.org/10.1016/j.psep.2020.03.022
36Tepsour, M., Usmanbaha, N., Rattanaya, T., Jariyaboon, R., O-Thong, S., Prasertsan, P. and Kongjan, P. (2019). Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion. ENERGIES, 12(22)
Cited: 11 doi: https://doi.org/10.3390/en12224368
37Kongjan, P., Reungsang, A., Phasukarratchai, N. and Sittijunda, S. (2019). Biogas Production from Single Digestion of Napier Grass Hydrolysate and Co-Digestion of Solid Fraction of Microwave Acid Pretreated Napier Grass with Swine Manure. CHIANG MAI JOURNAL OF SCIENCE, 46(4), 639-652.
Cited: 6
38Suksong, W., Mamimin, C., Prasertsan, P., Kongjan, P. and O-Thong, S. (2019). Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. INDUSTRIAL CROPS AND PRODUCTS, 133, 193-202.
Cited: 33 doi: https://doi.org/10.1016/j.indcrop.2019.03.005
39Mamimin, C., Kongjan, P., O-Thong, S. and Prasertsan, P. (2019). Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 44(32), 17224-17237.
Cited: 39 doi: https://doi.org/10.1016/j.ijhydene.2019.03.275
40Salaeh, S., Kongjan, P., Panphon, S., Hemmanee, S., Reungsang, A. and Jariyaboon, R. (2019). Feasibility of ABE fermentation from Rhizoclonium spp. hydrolysate with low nutrient supplementation. BIOMASS & BIOENERGY, 127
Cited: 12 doi: https://doi.org/10.1016/j.biombioe.2019.105269
41Kongjan, P., Inchan, S., Chanthong, S., Jariyaboon, R., Reungsang, A. and O-Thong, S. (2019). Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 44(6), 3317-3324.
Cited: 30 doi: https://doi.org/10.1016/j.ijhydene.2018.09.066
42Usmanbaha, N., Jariyaboon, R., Reungsang, A., Kongjan, P. and Chu, CY. (2019). Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. ENERGIES, 12(13)
Cited: 25 doi: https://doi.org/10.3390/en12132529
43O-Thong, S., Mamimin, C., Kongjan, P. and Reungsang, A. (2019). Thermophilic Fermentation for Enhanced Biohydrogen Production. BIOHYDROGEN, 2ND EDITION, 123-139.
Cited: 10 doi: https://doi.org/10.1016/B978-0-444-64203-5.00005-8
44Suksong, W., Kongjan, P., Prasertsan, P. and O-Thong, S. (2019). Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 291
Cited: 60 doi: https://doi.org/10.1016/j.biortech.2019.121851
45Mamimin, C., Kongjan, P., O-Thong, S. and Prasertsan, P. (2018). Biohythane production from co-digestion of palm oil mill effluent with biomass residues of palm oil mill industry. NEW BIOTECHNOLOGY, 44, S121-S121.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1045
46Kongjan, P., Sama, K., O-Thong, S., Reunsang, A., Usmanbaha, N. and Jariyaboon, R. (2018). Continuous two-stage anaerobic co-digestion of Skim Latex Serum (SLS) and Rhizoclonium sp macro-algae for bio-hythane production. NEW BIOTECHNOLOGY, 44, S126-S126.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1062
47Wongfaed, N., O-Thong, S., Kongjan, P., Prasertsan, P. and Reungsang, A. (2018). Effect lipids in palm oil mill effluent on process imbalance of biogas production systems. NEW BIOTECHNOLOGY, 44, S107-S108.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1000
48Kongjan, P., Sama, K., Sani, K., Jariyaboon, R. and Reungsang, A. (2018). Feasibility of bio-hythane production by codigesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 43(20), 9577-9590.
Cited: 20 doi: https://doi.org/10.1016/j.ijhydene.2018.04.052
49Panpong, K., Srimachai, T., Nuithitikul, K., Kongjan, P., O-Thong, S., Imai, T. and Kaewthong, N. (2017). Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. 2017 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 138, 260-266.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2017.10.050
50Saelor, S., Kongjan, P. and O-Thong, S. (2017). Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. 2017 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 138, 717-722.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2017.10.206
51Khongkliang, P., Kongjan, P., Utarapichat, B., Reungsang, A. and O-Thong, S. (2017). Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 42(45), 27584-27592.
Cited: 78 doi: https://doi.org/10.1016/j.ijhydene.2017.06.145
52Nualsri, C., Kongjan, P., Reungsang, A. and Imai, T. (2017). Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLOS ONE, 12(2)
Cited: 16 doi: https://doi.org/10.1371/journal.pone.0171248
53Mamimin, C., Prasertsan, P., Kongjan, P. and O-Thong, S. (2017). Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 29, 78-85.
Cited: 73 doi: https://doi.org/10.1016/j.ejbt.2017.07.006
54Suksong, W., Jehlee, A., Singkhala, A., Kongjan, P., Prasertsan, P., Imai, T. and O-Thong, S. (2017). Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. INDUSTRIAL CROPS AND PRODUCTS, 95, 502-511.
Cited: 33 doi: https://doi.org/10.1016/j.indcrop.2016.11.002
55Siripatana, C., Jijai, S. and Kongjan, P. (2016). Analysis and Extension of Gompertz-Type and Monod-Type Equations for Estimation of Design Parameters from Batch Anaerobic Digestion Experiments. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 1775
Cited: 8 doi: https://doi.org/10.1063/1.4965199
56Nualsri, C., Kongjan, P. and Reungsang, A. (2016). Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 41(40), 17884-17895.
Cited: 62 doi: https://doi.org/10.1016/j.ijhydene.2016.07.135
57Yingthavorn, N., Rakmak, N., Kongjan, P. and Siripatana, C. (2016). MATHEMATICAL MODELING OF EXISTING TWO STAGE ANAEROBIC DIGESTION PROCESS FOR PALM OIL MILL WASTEWATER. JURNAL TEKNOLOGI, 78(10-4), 21-26.
Cited: 2
58Suksong, W., Kongjan, P., Prasertsan, P., Imai, T. and O-Thong, S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 214, 166-174.
Cited: 56 doi: https://doi.org/10.1016/j.biortech.2016.04.077
59Jariyaboon, R., O-Thong, S. and Kongjan, P. (2015). Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. BIORESOURCE TECHNOLOGY, 198, 198-206.
Cited: 58 doi: https://doi.org/10.1016/j.biortech.2015.09.006
60Chaikitkaew, S., Kongjan, P. and O-Thong, S. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 838-844.
Cited: 39 doi: https://doi.org/10.1016/j.egypro.2015.11.575
61Suksong, W., Kongjan, P. and O-Thong, S. (2015). Biohythane Production from Co-Digestion of Palm Oil Mill Effluent with Solid Residues by Two-Stage Solid State Anaerobic Digestion Process. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 943-949.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2015.11.591
62Mamimin, C., Chaikitkaew, S., Niyasom, C., Kongjan, P. and O-Thong, S. (2015). Effect of Operating Parameters on Process Stability of Continuous Biohydrogen Production from Palm Oil Mill Effluent under Thermophilic Condition. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 815-821.
Cited: 15 doi: https://doi.org/10.1016/j.egypro.2015.11.571
63Wongfaed, N., Kongjan, P. and O-Thang, S. (2015). Effect of Substrate and Intermediate Composition on Foaming in Palm Oil Mill Effluent Anaerobic Digestion System. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 930-936.
Cited: 4 doi: https://doi.org/10.1016/j.egypro.2015.11.589
64Khongkliang, P., Kongjan, P. and O-Thong, S. (2015). Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 827-832.
Cited: 32 doi: https://doi.org/10.1016/j.egypro.2015.11.573
65Mamimin, C., Singkhala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T. and O-Thong, S. (2015). Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 40(19), 6319-6328.
Cited: 125 doi: https://doi.org/10.1016/j.ijhydene.2015.03.068
66Panpong, K., Srisuwan, G., O-Thong, S. and Kongjan, P. (2014). Anaerobic Co-digestion of Canned Seafood Wastewater with Glycerol Waste for Enhanced Biogas Production. 2013 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES (2013 AEDCEE), 52, 328-336.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2014.07.084
67Kongjan, P., Jariyaboon, R. and O-Thong, S. (2014). Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 39(33), 19343-19348.
Cited: 37 doi: https://doi.org/10.1016/j.ijhydene.2014.06.057
68Kongjan, P., O-Thong, S. and Angelidaki, I. (2013). Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. ENGINEERING IN LIFE SCIENCES, 13(2), 118-125.
Cited: 53 doi: https://doi.org/10.1002/elsc.201100191
69Kongjan, P., O-Thong, S. and Angelidaki, I. (2011). Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. BIORESOURCE TECHNOLOGY, 102(5), 4028-4035.
Cited: 106 doi: https://doi.org/10.1016/j.biortech.2010.12.009
รวม WoS/ISI 69 รายการ 1,509 citations
ตาราง ผลงานตีพิมพ์ Scopus ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1Sani K., O-Thong S., Jariyaboon R., Reungsang A., Yasui H. and Kongjan P. (2025). Anaerobic co-digestion of glycerol waste and distillery wastewater for bio-hythane production: Performance and ADM-1 based kinetics. Carbon Resources Conversion
Cited: 0 doi: https://doi.org/10.1016/j.crcon.2025.100311
2Usmanbaha N., Sani K., Jariyaboon R., Raketh M., O-Thong S. and Kongjan P. (2025). Co-digestion of palm oil mill effluent and Ceratophyllum demersum in a two-stage anaerobic bioreactor to recovering gaseous biofuel. International Journal of Hydrogen Energy, 97, 1375-1385.
Cited: 0 doi: https://doi.org/10.1016/j.ijhydene.2024.12.007
3Wongfaed N., Sittijunda S., O-Thong S., Kongjan P., Jariyaboon R., Plangklang P. and Reungsang A. (2025). Enhancement of dark fermentative hydrogen production using metal-modified biochar from sugarcane residues: Optimization, characterization, and metabolic analysis. Journal of Environmental Management, 380
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2025.125047
4Promnuan K., Ma R., Raketh M., Kongjan P., Chotisuwan S. and Jariyaboon R. (2025). Low-cost biomass ash-based adsorbent for removal of hydrogen sulfide gas. Carbon Resources Conversion
Cited: 0 doi: https://doi.org/10.1016/j.crcon.2025.100327
5, Jariyaboon R., Kongjan P., Chantasuban T. and Chotisuwan S. (2025). Preparation and Characterization of Sulfonated CaO Catalyst for Biodiesel Production from Waste Cooking Oil. ASEAN Journal of Scientific and Technological Reports, 28(1)
Cited: 1 doi: https://doi.org/10.55164/ajstr.v28i1.255558
6Mukherjee T., Senevirathne N., Kongjan P. and Kaparaju P. (2024). Effect of Temperature and Inoculum-to-Substrate Ratios on Two-Stage Biohydrogen and Methane Production from Sugarcane Molasses. Energy and Fuels
Cited: 0 doi: https://doi.org/10.1021/acs.energyfuels.4c04248
7Kongjan P., Sa-Oh S., Raketh M., Malibo S. and Jariyaboon R. (2024). Effect of torrefaction pretreatment for ethanol fermentation from sugarcane bagasse. Asia-Pacific Journal of Science and Technology, 29(3)
Cited: 0 doi: https://doi.org/10.14456/apst.2024.45
8Chanthong S. and Kongjan P. (2024). Enhancing Biogas Production from Empty Fruit Bunch by Weak Acid Pretreatment: Process Optimization and Synergistic Effects. ASEAN Journal of Scientific and Technological Reports, 27(3)
Cited: 0 doi: https://doi.org/10.55164/ajstr.v27i3.253623
9Saelor S., Kongjan P., Prasertsan P., Mamimin C. and O-Thong S. (2024). Enhancing the efficiency of high solid anaerobic digestion of empty fruit bunches under thermophilic conditions by particle size reduction and co-digestion with palm oil mill effluent. Carbon Resources Conversion
Cited: 0 doi: https://doi.org/10.1016/j.crcon.2024.100262
10Saelor S., Kongjan P., Prasertsan P., Mamimin C. and O-Thong S. (2024). Enhancing thermophilic methane production from oil palm empty fruit bunches through various pretreatment methods: A comparative study. Heliyon, 10(20)
Cited: 0 doi: https://doi.org/10.1016/j.heliyon.2024.e39668
11Raketh M., Kongjan P., O-Thong S., Mamimin C., Jariyaboon R. and Promnuan K. (2024). Life cycle assessment (LCA) and economic analysis of two-stage anaerobic process of co-digesting palm oil mill effluent (POME) with concentrated latex wastewater (CLW) for biogas production. Process Safety and Environmental Protection, 192, 450-459.
Cited: 0 doi: https://doi.org/10.1016/j.psep.2024.10.079
12Saeed Z., Cheirsilp B., Maneechote W., Kongjan P. and Jariyaboon R. (2024). Optimizing bioencapsulation of yeast cells by Aspergillus tubingensis TSIP9 and applications in bioethanol production through repeated-batch fermentation. Biocatalysis and Agricultural Biotechnology, 61
Cited: 0 doi: https://doi.org/10.1016/j.bcab.2024.103377
13Wongdaeng F., Chotisuwan S., Jariyaboon R. and Kongjan P. (2024). Pyrolysis of Latex Sediment from Concentrated Latex Industry and Properties of Pyrolytic Products. ASEAN Journal of Scientific and Technological Reports, 27(2), 21-28.
Cited: 0 doi: https://doi.org/10.55164/ajstr.v27i2.250798
14Chanthong S., Kongjan P., Jariyaboon R. and O-Thong S. (2024). Synergistic integration of hydrothermal pretreatment and co-digestion for enhanced biogas production from empty fruit bunches in high solids anaerobic digestion. Heliyon, 10(15)
Cited: 0 doi: https://doi.org/10.1016/j.heliyon.2024.e34817
15Manmeen A., Kongjan P., Palamanit A. and Jariyaboon R. (2023). Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. Industrial Crops and Products, 203
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2023.117162
16Kongjan P., Reungsang A. and Sittijunda S. (2023). Conversion of glycerol derived from biodiesel production to butanol and 1,3-propanediol. Chemical Substitutes from Agricultural and Industrial By-Products: Bioconversion, Bioprocessing, and Biorefining, 337-353.
Cited: 0 doi: https://doi.org/10.1002/9783527841141.ch17
17Raketh M., Kongjan P., Trably E., Samahae N. and Jariyaboon R. (2023). Effect of organic loading rate and effluent recirculation on biogas production of desulfated skim latex serum using up-flow anaerobic sludge blanket reactor. Journal of Environmental Management, 327
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2022.116886
18Srimachai T., Meengam C., Kongjan P. and Rattanadilok Na Phuket K. (2023). Efficient Conversion of Oil Palm Trunk and Frond to Bioethanol and Biogas Using Two-Stage Steam Explosion Pretreatment. ASEAN Journal of Scientific and Technological Reports, 26(4), 11-20.
Cited: 0 doi: https://doi.org/10.55164/ajstr.v26i4.249622
19Raketh M., Kana R., Kongjan P., O-Thong S., Mamimin C. and Jariyaboon R. (2023). Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. Journal of Environmental Management, 346
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2023.119031
20Khaonuan S., Jariyaboon R., Usmanbaha N., Cheirsilp B., Birkeland N. and Kongjan P. (2023). Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation. Biotechnology Journal
Cited: 0 doi: https://doi.org/10.1002/biot.202300026
21Manmeen A., Kongjan P., Palamanit A. and Jariyaboon R. (2023). The biochar, and pyrolysis liquid characteristics, of three indigenous durian peel; Monthong, Puangmanee, and Bacho. Biomass and Bioenergy, 174
Cited: 0 doi: https://doi.org/10.1016/j.biombioe.2023.106816
22Jariyaboon R., Hayeeyunu S., Usmanbaha N., Ismail S., O-Thong S., Mamimin C. and Kongjan P. (2023). Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 9(7)
Cited: 0 doi: https://doi.org/10.3390/fermentation9070636
23Baidugem S., Kongjan P., Sani K., Raketh M., Saraluck S., Chotisuwan S. and Jariyaboon R. (2023). Treatment and recycling of condensate wastewater for by-product production process of canned tuna factory: batch and continuous adsorption in a real production plant. Desalination and Water Treatment, 311, 175-187.
Cited: 0 doi: https://doi.org/10.5004/dwt.2023.29974
24Rattanaya T., Kongjan P., Cheewasedtham C., Bunyakan C., Yuso P., Cheirsilp B. and Jariyaboon R. (2022). Application of palm oil mill waste to enhance biogas upgrading and hornwort cultivation. Journal of Environmental Management, 309
Cited: 1 doi: https://doi.org/10.1016/j.jenvman.2022.114678
25Raketh M., Kongjan P., Sani K., Trably E., Cheirsilp B. and Jariyaboon R. (2022). Biodegradation efficiencies and economic feasibility of single-stage and two-stage anaerobic digestion of desulfated Skim Latex Serum (SLS) by using rubber wood ash. Process Safety and Environmental Protection, 162, 721-732.
Cited: 0 doi: https://doi.org/10.1016/j.psep.2022.04.043
26Kongjan P., Tohlang N., Khaonuan S., Cheirsilp B. and Jariyaboon R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. Biochemical Engineering Journal, 182
Cited: 0 doi: https://doi.org/10.1016/j.bej.2022.108437
27Sani K., Jariyaboon R., O-Thong S., Cheirsilp B., Kaparaju P., Raketh M. and Kongjan P. (2022). Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery. Journal of Environmental Management, 316
Cited: 1 doi: https://doi.org/10.1016/j.jenvman.2022.115307
28Manmeen A., Kongjan P., Rattanaya T., Cheirsilp B., Raybut N. and Jariyaboon R. (2022). Desulfurization of H<inf>2</inf>S-rich biogas using water scrubbing: Performance in pilot scale scrubber and scale-up estimation for the concentrated latex factory. Environmental Progress and Sustainable Energy
Cited: 0 doi: https://doi.org/10.1002/ep.14034
29Sittijunda S., Baka S., Jariyaboon R., Reungsang A., IMAI T. and Kongjan P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 8(10)
Cited: 0 doi: https://doi.org/10.3390/fermentation8100537
30Sani K., Jariyaboon R., O-Thong S., Cheirsilp B., Kaparaju P., Wang Y. and Kongjan P. (2022). Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. Water Research, 221
Cited: 0 doi: https://doi.org/10.1016/j.watres.2022.118736
31Sripitak B., Jariyaboon R., Raketh M., Reungsang A., Mamimin C., O-Thong S. and Kongjan P. (2022). The Three-stage High Solid Anaerobic Digestion (TSHS-AD) under Ambient Temperature for Enhanced Biogas Production from Cow Manure. Chiang Mai Journal of Science, 49(5), 1273-1295.
Cited: 0 doi: https://doi.org/10.12982/CMJS.2022.078
32Wang Y., Jing Y., Lu C., Kongjan P., Wang J., Kumar Awasthi M., Tahir N. and Zhang Q. (2021). A syntrophic co-fermentation model for bio-hydrogen production. Journal of Cleaner Production, 317
Cited: 10 doi: https://doi.org/10.1016/j.jclepro.2021.128288
33Kongjan P., Usmanbaha N., Khaonuan S., Jariyaboon R., O-Thong S. and Reungsang A. (2021). Butanol production from algal biomass by acetone-butanol-ethanol fermentation process. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 421-446.
Cited: 0 doi: https://doi.org/10.1016/B978-0-323-85223-4.00014-2
34Kongjan P., Jariyaboon R., Reungsang A. and Sittijunda S. (2021). Co-fermentation of 1,3-propanediol and 2,3-butanediol from crude glycerol derived from the biodiesel production process by newly isolated Enterobacter sp.: Optimization factors affecting. Bioresource Technology Reports, 13
Cited: 4 doi: https://doi.org/10.1016/j.biteb.2020.100616
35Sani K., Kongjan P., Pakhathirathien C., Cheirsilp B., Raketh M., Kana R. and Jariyaboon R. (2021). Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. Journal of Water Process Engineering, 39
Cited: 6 doi: https://doi.org/10.1016/j.jwpe.2020.101661
36Prasertsan P., Leamdum C., Chantong S., Mamimin C., Kongjan P. and O-Thong S. (2021). Enhanced biogas production by co-digestion of crude glycerol and ethanol with palm oil mill effluent and microbial community analysis. Biomass and Bioenergy, 148
Cited: 3 doi: https://doi.org/10.1016/j.biombioe.2021.106037
37Wongfaed N., Kongjan P., Suksong W., Prasertsan P. and O-Thong S. (2021). Strategies for recovery of imbalanced full-scale biogas reactor feeding with palm oil mill effluent. PeerJ, 9
Cited: 2 doi: https://doi.org/10.7717/peerj.10592
38Raketh M., Jariyaboon R., Kongjan P., Trably E., Reungsang A., Sripitak B. and Chotisuwan S. (2021). Sulfate removal using rubber wood ash to enhance biogas production from sulfate-rich wastewater generated from a concentrated latex factory. Biochemical Engineering Journal, 173
Cited: 6 doi: https://doi.org/10.1016/j.bej.2021.108084
39Rattanaya T., Manmeen A., Kongjan P., Bunyakan C., Reungsang A., Prasertsit K., Lombardi L. and Jariyaboon R. (2021). Upgrading biogas to biomethane using untreated groundwater-NaOH absorbent: Pilot-scale experiment and scale-up estimation for a palm oil mill. Journal of Water Process Engineering, 44
Cited: 0 doi: https://doi.org/10.1016/j.jwpe.2021.102405
40Wijaya A., Jariyaboon R., Reungsang A. and Kongjan P. (2020). Biochemical methane potential (BMP) of cattle manure, chicken manure, rice straw, and hornwort in mesophilic mono-digestion. International Journal of Integrated Engineering, 12(3), 1-8.
Cited: 4 doi: https://doi.org/10.30880/ijie.2020.12.03.001
41Suksong W., Tukanghan W., Promnuan K., Kongjan P., Reungsang A., Insam H., O&, amp, apos and Thong S. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology, 296
Cited: 29 doi: https://doi.org/10.1016/j.biortech.2019.122304
42Zulkifli Z., Rasit N., Siddique M. and Kongjan P. (2020). Dry mesophilic and thermophilic semi-continuous anaerobic digestion of cow manure: Effects of solid loading rate on the process performance. Biointerface Research in Applied Chemistry, 10(4), 5972-5977.
Cited: 0 doi: https://doi.org/10.33263/BRIAC104.972977
43Wongfaed N., Kongjan P., Prasertsan P., O&, amp, apos and Thong S. (2020). Effect of oil and derivative in palm oil mill effluent on the process imbalance of biogas production. Journal of Cleaner Production, 247
Cited: 11 doi: https://doi.org/10.1016/j.jclepro.2019.119110
44Suksong W., Wongfaed N., Sangsri B., Kongjan P., Prasertsan P., Podmirseg S., Insam H., O&, amp, apos and Thong S. (2020). Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. Industrial Crops and Products, 145
Cited: 12 doi: https://doi.org/10.1016/j.indcrop.2020.112099
45Sunarno J., Prasertsan P., Duangsuwan W., Kongjan P. and Cheirsilp B. (2020). Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. Biochemical Engineering Journal, 155
Cited: 9 doi: https://doi.org/10.1016/j.bej.2019.107471
46Promnuan K., Higuchi T., IMAI T., Kongjan P. and Reungsang A. (2020). Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. International Journal of Hydrogen Energy, 45(1), 263-274.
Cited: 13 doi: https://doi.org/10.1016/j.ijhydene.2019.10.237
47O-Thong S., Mamimin C., Kongjan P. and Reungsang A. (2020). Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Advances in Bioenergy, 5, 249-308.
Cited: 2 doi: https://doi.org/10.1016/bs.aibe.2020.04.007
48Rattanaya T., Kongjan P., Bunyakan C., Reungsang A. and Jariyaboon R. (2020). Upgrading biogas to biomethane: Alkaline recovery of absorbed solution by thermal decomposition. Process Safety and Environmental Protection, 138, 157-166.
Cited: 5 doi: https://doi.org/10.1016/j.psep.2020.03.022
49Tepsour M., Usmanbaha N., Rattanaya T., Jariyaboon R., O-Thong S., Prasertsan P. and Kongjan P. (2019). Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion. Energies, 12(22)
Cited: 11 doi: https://doi.org/10.3390/en12224368
50Kongjan P., Reungsang A., Phasukarratchai N. and Sittijunda S. (2019). Biogas production from single digestion of napier grass hydrolysate and co-digestion of solid fraction of microwave acid pretreated napier grass with swine manure. Chiang Mai Journal of Science, 46(4), 639-652.
Cited: 4
51Suksong W., Mamimin C., Prasertsan P., Kongjan P., O&, amp, apos and Thong S. (2019). Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. Industrial Crops and Products, 133, 193-202.
Cited: 21 doi: https://doi.org/10.1016/j.indcrop.2019.03.005
52Mamimin C., Kongjan P., O-Thong S. and Prasertsan P. (2019). Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. International Journal of Hydrogen Energy, 44(32), 17224-17237.
Cited: 23 doi: https://doi.org/10.1016/j.ijhydene.2019.03.275
53Salaeh S., Kongjan P., Panphon S., Hemmanee S., Reungsang A. and Jariyaboon R. (2019). Feasibility of ABE fermentation from Rhizoclonium spp. hydrolysate with low nutrient supplementation. Biomass and Bioenergy, 127
Cited: 7 doi: https://doi.org/10.1016/j.biombioe.2019.105269
54Khongkliang P., Jehlee A., Kongjan P. and Reungsang A. (2019). High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. International Journal of Hydrogen Energy, 44(60), 31841-31852.
Cited: 21 doi: https://doi.org/10.1016/j.ijhydene.2019.10.022
55Kongjan P., Inchan S., Chanthong S., Jariyaboon R., Reungsang A. and O-Thong S. (2019). Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. International Journal of Hydrogen Energy, 3317-3324.
Cited: 22 doi: https://doi.org/10.1016/j.ijhydene.2018.09.066
56Usmanbaha N., Jariyaboon R., Reungsang A., Kongjan P. and Chu C. (2019). Optimization of batch dark fermentation of chlorella sp. using mixed-cultures for simultaneous hydrogen and butyric acid production. Energies, 12(13)
Cited: 18 doi: https://doi.org/10.3390/en12132529
57O-Thong S., Mamimin C., Kongjan P. and Reungsang A. (2019). Thermophilic Fermentation for Enhanced Biohydrogen Production. Biomass, Biofuels, Biochemicals: Biohydrogen, Second Edition, 123-139.
Cited: 7 doi: https://doi.org/10.1016/B978-0-444-64203-5.00005-8
58Suksong W., Kongjan P., Prasertsan P., O&, amp, apos and Thong S. (2019). Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresource Technology, 291
Cited: 24 doi: https://doi.org/10.1016/j.biortech.2019.121851
59Kongjan P., Sama K., Sani K., Jariyaboon R. and Reungsang A. (2018). Feasibility of bio-hythane production by co-digesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. International Journal of Hydrogen Energy, 43(20), 9577-9590.
Cited: 15 doi: https://doi.org/10.1016/j.ijhydene.2018.04.052
60Panpong K., Srimachai T., Nuithitikul K., Kongjan P., IMAI T. and Kaewthong N. (2017). Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. Energy Procedia, 138, 260-266.
Cited: 4 doi: https://doi.org/10.1016/j.egypro.2017.10.050
61Saelor S. and Kongjan P. (2017). Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. Energy Procedia, 138, 717-722.
Cited: 32 doi: https://doi.org/10.1016/j.egypro.2017.10.206
62Khongkliang P., Kongjan P., Utarapichat B. and Reungsang A. (2017). Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. International Journal of Hydrogen Energy, 42(45), 27584-27592.
Cited: 57 doi: https://doi.org/10.1016/j.ijhydene.2017.06.145
63Nualsri C., Kongjan P., Reungsang A. and IMAI T. (2017). Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLoS ONE, 12(2)
Cited: 10 doi: https://doi.org/10.1371/journal.pone.0171248
64Mamimin C., Prasertsan P., Kongjan P., O&, amp, apos and Thong S. (2017). Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electronic Journal of Biotechnology, 29, 78-85.
Cited: 55 doi: https://doi.org/10.1016/j.ejbt.2017.07.006
65Suksong W., Jehlee A., Singkhala A., Kongjan P., Prasertsan P., IMAI T., O&, amp, apos and Thong S. (2017). Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. Industrial Crops and Products, 95, 502-511.
Cited: 30 doi: https://doi.org/10.1016/j.indcrop.2016.11.002
66Siripatana C., Jijai S. and Kongjan P. (2016). Analysis and extension of Gompertz-type and Monod-type equations for estimation of design parameters from batch anaerobic digestion experiments. AIP Conference Proceedings, 1775
Cited: 9 doi: https://doi.org/10.1063/1.4965199
67Nualsri C., Kongjan P. and Reungsang A. (2016). Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. International Journal of Hydrogen Energy, 41(40), 17884-17895.
Cited: 54 doi: https://doi.org/10.1016/j.ijhydene.2016.07.135
68Yingthavorn N., Rakmak N., Kongjan P. and Siripatanaa C. (2016). Mathematical modeling of existing two stage anaerobic digestion process for palm oil mill wastewater. Jurnal Teknologi, 78(10-4), 21-26.
Cited: 4 doi: https://doi.org/10.11113/jt.v78.9886
69Suksong W., Kongjan P., Prasertsan P., IMAI T., O&, amp, apos and Thong S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166-174.
Cited: 46 doi: https://doi.org/10.1016/j.biortech.2016.04.077
70Panpong K., Nuithitikul K., O-Thong S. and Kongjan P. (2015). Anaerobic Co-Digestion Biomethanation of Cannery Seafood Wastewater with Microcystis SP; Blue Green Algae with/without Glycerol Waste. Energy Procedia, 79, 103-110.
Cited: 8 doi: https://doi.org/10.1016/j.egypro.2015.11.487
71Jariyaboon R. and Kongjan P. (2015). Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresource Technology, 198, 198-206.
Cited: 48 doi: https://doi.org/10.1016/j.biortech.2015.09.006
72Chaikitkaew S. and Kongjan P. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. Energy Procedia, 79, 838-844.
Cited: 44 doi: https://doi.org/10.1016/j.egypro.2015.11.575
73Suksong W. and Kongjan P. (2015). Biohythane Production from Co-Digestion of Palm Oil Mill Effluent with Solid Residues by Two-Stage Solid State Anaerobic Digestion Process. Energy Procedia, 79, 943-949.
Cited: 29 doi: https://doi.org/10.1016/j.egypro.2015.11.591
74Mamimin C., Chaikitkaew S., Niyasom C. and Kongjan P. (2015). Effect of Operating Parameters on Process Stability of Continuous Biohydrogen Production from Palm Oil Mill Effluent under Thermophilic Condition. Energy Procedia, 79, 815-821.
Cited: 13 doi: https://doi.org/10.1016/j.egypro.2015.11.571
75Wongfaed N., Kongjan P. and O-Thang S. (2015). Effect of Substrate and Intermediate Composition on Foaming in Palm Oil Mill Effluent Anaerobic Digestion System. Energy Procedia, 79, 930-936.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2015.11.589
76Khongkliang P. and Kongjan P. (2015). Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. Energy Procedia, 79, 827-832.
Cited: 29 doi: https://doi.org/10.1016/j.egypro.2015.11.573
77Srimachai T., Nuithitikul K., Kongjan P. and Panpong K. (2015). Optimization and Kinetic Modeling of Ethanol Production from Oil Palm Frond Juice in Batch Fermentation. Energy Procedia, 79, 111-118.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2015.11.490
78Mamimin C., Singkhala A., Kongjan P., Suraraksa B., Prasertsan P., IMAI T., O&, amp, apos and Thong S. (2015). Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. International Journal of Hydrogen Energy, 40(19), 6319-6328.
Cited: 94 doi: https://doi.org/10.1016/j.ijhydene.2015.03.068
79Panpong K., Srisuwan G., O-Thong S. and Kongjan P. (2014). Anaerobic co-digestion of canned seafood wastewater with glycerol waste for enhanced biogas production. Energy Procedia, 52, 328-336.
Cited: 26 doi: https://doi.org/10.1016/j.egypro.2014.07.084
80Kongjan P. and Jariyaboon R. (2014). Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 39(33), 19343-19348.
Cited: 29 doi: https://doi.org/10.1016/j.ijhydene.2014.06.057
81Panpong K., Srisuwan G. and Kongjan P. (2014). Enhanced biogas production from canned seafood wastewater by CO-digestion with glycerol waste and wolffia arrhiza. Energy Procedia, 52, 337-351.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2014.07.085
82Kongjan P., O-Thong S. and Angelidaki I. (2013). Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. Engineering in Life Sciences, 13(2), 118-125.
Cited: 49 doi: https://doi.org/10.1002/elsc.201100191
83Kongjan P., O-Thong S. and Angelidaki I. (2011). Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules. International Journal of Hydrogen Energy, 36(21), 14261-14269.
Cited: 25 doi: https://doi.org/10.1016/j.ijhydene.2011.06.130
84Kongjan P., O-Thong S. and Angelidaki I. (2011). Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresource Technology, 102(5), 4028-4035.
Cited: 102 doi: https://doi.org/10.1016/j.biortech.2010.12.009
85Zhang Y., Gonzalez Olias L., Kongjan P. and Angelidaki I. (2011). Submersible microbial fuel cell for electricity production from sewage sludge. Water Science and Technology, 64(1), 50-55.
Cited: 31 doi: https://doi.org/10.2166/wst.2011.678
86Kongjan P., Kotay S., Min B. and Angelidaki I. (2010). Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105(5), 899-908.
Cited: 114 doi: https://doi.org/10.1002/bit.22616
87Kongjan P. and Angelidaki I. (2010). Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresource Technology, 101(20), 7789-7796.
Cited: 119 doi: https://doi.org/10.1016/j.biortech.2010.05.024
88Kaparaju P., Serrano M., Thomsen A., Kongjan P. and Angelidaki I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562-2568.
Cited: 550 doi: https://doi.org/10.1016/j.biortech.2008.11.011
89Kongjan P., Min B. and Angelidaki I. (2009). Biohydrogen production from xylose at extreme thermophilic temperatures (70 ?C) by mixed culture fermentation. Water Research, 43(5), 1414-1424.
Cited: 116 doi: https://doi.org/10.1016/j.watres.2008.12.016
รวม Scopus 89 รายการ 2,060 citations
ตาราง ผลงานตีพิมพ์ TCI ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1ธีระพงษ์ บ้างบุญเรือง; ประวิทย์ คงจันทร์; นุชนาถ แช่มช้อย (2558). ผลผลิตชีวมวลและประสิทธิภาพการบำบัดน้ำเสีย ของสาหร่ายสไปรูลินา TISTR 8222. วารสาร มฉก.วิชาการ, 19(37), 55-70.
Cited:
รวม TCI 1 รายการ 0 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th