SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)

กรอง
ช่วงปี
ถึง
ตาราง ผลงานตีพิมพ์ Scopus ของ นาบิล หะยีมะแซ
ลำดับรายละเอียดผลงาน
1Masa A., Worlee A., Jehsoh N. and Hayeemasae N. (2025). A flower-like morphology in natural rubber latex film binder: Mechanical and antifungal characteristics. Journal of Vinyl and Additive Technology
Cited: 0 doi: https://doi.org/10.1002/vnl.22218
2Masa A., Jehsoh N. and Hayeemasae N. (2025). Application of natural rubber latex foam as an effective oil absorbent. Polimeros, 35(1)
Cited: 0 doi: https://doi.org/10.1590/0104-1428.20240027
3Masa A., Jehsoh N. and Hayeemasae N. (2025). Dye Adsorbent from Natural Rubber Latex Foam: Efficiency and Post-Utilization. Polymers, 17(1)
Cited: 0 doi: https://doi.org/10.3390/polym17010106
4Hayeemasae N., Soontaranon S., Zakaria Z., Mohamad Rasidi M. and Masa A. (2025). Effect of styrene content on structure and properties of vulcanizates from natural rubber grafted with polystyrene. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606251321527
5Hayeemasae N., Worlee A. and Masa A. (2025). Influence Of Calcium Carbonate Content On Properties Of Natural Rubber And Acrylic Blends For Coating Applications. Journal of Applied Science and Engineering (Taiwan), 28(2), 411-419.
Cited: 0 doi: https://doi.org/10.6180/jase.202502_28(2).0019
6Surya I., Sadanta R., Sukeksi L., Sidabutar R. and Hayeemasae N. (2025). Processing characteristics and mechanical properties of styrene butadiene rubber filled with varying amounts of silica. IOP Conference Series: Earth and Environmental Science, 1445(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1445/1/012070
7Mohamad Aini N., Nadras O., Hazwan Hussin M., Sahakaro K. and Hayeemasae N. (2024). Application of lignin in rubber composites and future trends. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 257-283.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00014-9
8Hayeemasae N. and Masa A. (2024). Characterization and properties of sepiolite-filled natural rubber composites. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 135-147.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00006-X
9Hayeemasae N., Soontaranon S. and Masa A. (2024). Comparative Investigation of Nano-Sized Silica and Micrometer-Sized Calcium Carbonate on Structure and Properties of Natural Rubber Composites. Polymers, 16(8)
Cited: 0 doi: https://doi.org/10.3390/polym16081051
10Matchawet S., Dasaesamoh A., Hayeemasae N., Worlee A. and Sookyung U. (2024). Enhancing the performance of waste-paper particleboard using silica and aluminum hydroxide fillers. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606241243114
11Majid N., Rehman A., Mohd Sani N., Hayeemasae N., Ismail H., Masraff M. and Raa Khimi S. (2024). Facial fabrication of self-healing natural rubber foam based on zinc thiolate ionic networks. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.55280
12Worlee A., Hayeemasae N. and Masa A. (2024). Optimized titanium dioxide loading for properties of natural rubber latex and acrylic emulsion blends. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443241247201
13Hayeemasae N. (2024). Preparation and properties of halloysite nanotubes-filled epoxidized natural rubber composites. Rubber Composites: Recycling, Processing, Properties, Design and Applications, 11-29.
Cited: 0 doi: https://doi.org/10.1016/B978-0-443-23620-4.00003-4
14Hayeemasae N., Soontaranon S. and Masa A. (2024). Structure – property relationships of different natural rubber grades. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606241243113
15Surya I., Nasution K., Sembiring A. and Hayeemasae N. (2024). The Effect of Silica Concentration on the Absorption Properties of Silica-Based Ceramic Membrane. Journal of Physics: Conference Series, 2733(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2733/1/012015
16Surya I., Sembiring A., Nasution K. and Hayeemasae N. (2024). The porosity and morphology properties of ceramic membrane. Journal of Physics: Conference Series, 2733(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2733/1/012014
17Mohd Sani N., Majid N., Rehman A., Hayeemasae N., Radhakrishnan S., Kulkarni M. and Khimi R. (2023). A review of the recent development in self-healing rubbers and their quantification methods. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606231200952
18Masa A., Jehsoh N., Dueramae S. and Hayeemasae N. (2023). Boosting the Antibacterial Performance of Natural Rubber Latex Foam by Introducing Silver-Doped Zinc Oxide. Polymers, 15(4)
Cited: 0 doi: https://doi.org/10.3390/polym15041040
19Wahab N., Samsudin D., Jamaluddin S., Ahmad Z., Mustafa M., Sarip M., Hayeemasae N. and Saiwari S. (2023). Characterization and Tensile Properties of Self-healing Chitin-Devulcanized Ethylene Propylene Rubber (EPDM)—Waste Natural Rubber Blend. Springer Proceedings in Materials, 24, 265-277.
Cited: 0 doi: https://doi.org/10.1007/978-981-99-2015-0_21
20Hayeemasae N., Salleh S. and Ismail H. (2023). Chloroprene rubber waste as blend component with natural rubber, epoxidized natural rubber, and styrene butadiene rubber. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 271-289.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_13
21Hayeemasae N. and Ismail H. (2023). Comparative studies of natural rubber/virgin ethylene propylene diene rubber and natural rubber/recycled ethylene propylene diene rubber and natural rubber/blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 179-207.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_9
22Hayeemasae N. and Ismail H. (2023). Compatibilization of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 227-254.
Cited: 1 doi: https://doi.org/10.1007/978-3-031-37046-5_11
23Hayeemasae N., Salleh S. and Ismail H. (2023). Effect of metal oxide content on the mechanical and thermal properties of natural rubber/recycled chloroprene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 255-269.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_12
24Mohd Sani N., Thajudin N., Hayeemasae N. and Raa Khimi S. (2023). Effect of Zn<sup>2+</sup> salt bonding on thermo-reversible self-healing natural rubber. Journal of Applied Polymer Science
Cited: 0 doi: https://doi.org/10.1002/app.53924
25Jaratrotkamjorn R., Hayeemasae N., Zakaria Z. and Masa A. (2023). Influence of acid concentration on thermomechanical, tensile and thermal properties of cyclized natural rubber. Journal of Elastomers and Plastics
Cited: 0 doi: https://doi.org/10.1177/00952443231173827
26Surya I., Marpongahtun n. and Hayeemasae N. (2023). Oleamide as palm-oil based substance for silica-loaded styrene butadiene rubber compound: The cure and crosslinks behaviors. IOP Conference Series: Earth and Environmental Science, 1241(1)
Cited: 0 doi: https://doi.org/10.1088/1755-1315/1241/1/012096
27Hayeemasae N. and Ismail H. (2023). Optimization of accelerators on the properties of natural rubber/recycled ethylene propylene diene rubber blends. Recycled Polymer Blends and Composites: Processing, Properties, and Applications, 209-226.
Cited: 0 doi: https://doi.org/10.1007/978-3-031-37046-5_10
28Mohamed N., Nadras O., Raa Khimi S. and Hayeemasae N. (2023). Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iranian Polymer Journal (English Edition)
Cited: 0 doi: https://doi.org/10.1007/s13726-023-01203-7
29Masa A., Songkhla, Worlee A., Pattani, Matchawet S., Yala and Hayeemasae N. (2023). Property Enhancement of NR/ Halloysite Nanotubes Composites by Introducing dual Modification. KGK Kautschuk Gummi Kunststoffe, 76(1), 54-60.
Cited: 0
30Hayeemasae N., Viet C., Masa A., Raa Khimi S., Ismail H. and Surya I. (2023). The Use of Kenaf Fibre as a Natural Anti-Degradant in Recycled High-Density Polyethylene and Natural Rubber-Based Thermoplastic Elastomers. Polymers, 15(5)
Cited: 0 doi: https://doi.org/10.3390/polym15051237
31Baru F., Saiwari S. and Hayeemasae N. (2022). Classification of natural rubber foam grades by optimising the azodicarbonamide content. Polimeros, 32(2)
Cited: 0 doi: https://doi.org/10.1590/0104-1428.20210111
32Hayeemasae N., Adair A. and Masa A. (2022). COMPARATIVE STUDY ON VISCOSITIES, STRESS RELAXATION, CURING AND MECHANICAL PROPERTIES OF SEPIOLITE AND SILICA FILLED NATURAL RUBBER COMPOSITES. Malaysian Journal of Analytical Sciences, 26(2), 176-190.
Cited: 0
33Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Effect of hybrid carbon black/lignin on rheological, mechanical and thermal stability properties of NR/BR composites. Plastics, Rubber and Composites, 51(6), 293-305.
Cited: 1 doi: https://doi.org/10.1080/14658011.2021.1981718
34Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2022). EFFECT OF VULCANIZATION SYSTEMS AND CROSSLINK DENSITY ON TENSILE PROPERTIES AND NETWORK STRUCTURES OF NATURAL RUBBER. Jurnal Teknologi, 84(6), 181-187.
Cited: 0 doi: https://doi.org/10.11113/jurnalteknologi.v84.16467
35Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties. Industrial Crops and Products, 185
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2022.115167
36Rushdan A., Sapuan S., Bayraktar E., Hassan S., Hayeemasae N., Atikah M. and Shaker K. (2022). Fibre-Reinforced Polymer Composites: Mechanical Properties and Applications. Polymers, 14(18)
Cited: 0 doi: https://doi.org/10.3390/polym14183732
37Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Mechanical and other related properties. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 111-134.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-6
38Hayeemasae N. and Ismail H. (2022). Halloysite nanotubes-filled natural rubber composite: Morphology and crystallization of the composites. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials, 135-158.
Cited: 0 doi: https://doi.org/10.1201/9781003220947-7
39Hayeemasae N., Saiwari S., Soontaranon S. and Masa A. (2022). Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Polymers, 14(13)
Cited: 0 doi: https://doi.org/10.3390/polym14132713
40Hayeemasae N., Adair A., Rasidi M., Jitsopin P. and Masa A. (2022). Influence of Sepiolite Addition Methods and Contents on Physical Properties of Natural Rubber Composites. Science and Technology Indonesia, 7(2), 140-148.
Cited: 0 doi: https://doi.org/10.26554/sti.2022.7.2.140-148
41Ridho M., Agustiany E., Rahmi Dn M., Madyaratri E., Ghozali M., Restu W., Falah F., Rahandi Lubis M., Syamani F., Nurhamiyah Y., Hidayati S., Sohail A., Karungamye P., Nawawi D., Iswanto A., Othman N., Mohamad Aini N., Hussin M., Sahakaro K., Hayeemasae N., Ali M. and Fatriasari W. (2022). Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022
Cited: 0 doi: https://doi.org/10.1155/2022/1363481
42Chew J., Wahab M., Zulkeply N., Razak M. and Hayeemasae N. (2022). Preparation and characterization of NE-7150 and NE-7170 silicone rubber blend with different ratios and curing agents loading. AIP Conference Proceedings, 2496
Cited: 0 doi: https://doi.org/10.1063/5.0091399
43Saiwari S., Nobnop S., Bueraheng Y., Thitithammawong A., Hayeemasae N. and Salaeh S. (2022). Segregated MWCNT Structure Formation in Conductive Rubber Nanocomposites by Circular Recycling of Rubber Waste. ACS Applied Polymer Materials
Cited: 0 doi: https://doi.org/10.1021/acsapm.2c01203
44Saiwari S., Hayeemasae N., Soontaranon S., Kalkornsurapranee E., Jaratrotkamjorn R. and Masa A. (2022). Structure-Property relationships in natural rubber representing several clonal varieties of Hevea Brasiliensis. Progress in Rubber, Plastics and Recycling Technology
Cited: 0 doi: https://doi.org/10.1177/14777606221127372
45Hayeemasae N. and Ismail H. (2021). Application of Silane-treated Tea Waste Powder as a Potential Filler for Natural Rubber Composites. BioResources, 16(1), 1230-1244.
Cited: 3 doi: https://doi.org/10.15376/biores.16.1.1230-1244
46Masa A., Hayeemasae N., Soontaranon S., Pisal M. and Rasidi M. (2021). Effect of stretching rate on tensile response and crystallization behavior of crosslinked natural rubber. Malaysian Journal of Fundamental and Applied Sciences, 17(3), 217-225.
Cited: 0 doi: https://doi.org/10.11113/MJFAS.V17N3.2039
47Hayeemasae N., Soontaranon S., Rasidi M. and Masa A. (2021). ensile and structural properties of natural rubber vulcanizates with different mastication times. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09120
48Jitsopin P., Masa A., Hayeemasae N. and Rasidi M. (2021). Influence of Preparation Method on Properties of Natural Rubber/Sepiolite Composites. Journal of Physics: Conference Series, 2129(1)
Cited: 0 doi: https://doi.org/10.1088/1742-6596/2129/1/012075
49Jehsoh N., Surya I., Sahakaro K., Ismail H. and Hayeemasae N. (2021). Modified palm stearin compatibilized natural rubber/halloysite nanotubes composites: Reinforcement versus strain-induced crystallization. Journal of Elastomers and Plastics, 53(3), 210-227.
Cited: 3 doi: https://doi.org/10.1177/0095244320928573
50Surya I., Waesateh K., Saiwari S., Ismail H., Othman N. and Hayeemasae N. (2021). Potency of urea-treated halloysite nanotubes for the simultaneous boosting of mechanical properties and crystallization of epoxidized natural rubber composites. Polymers, 13(18)
Cited: 2 doi: https://doi.org/10.3390/polym13183068
51Hayeemasae N. and Ismail H. (2021). Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites. Polimeros, 31(1)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.09720
52Surya I., Waesateh K., Masa A. and Hayeemasae N. (2021). Selectively etched halloysite nanotubes as performance booster of epoxidized natural rubber composites. Polymers, 13(20)
Cited: 3 doi: https://doi.org/10.3390/polym13203536
53Hayeemasae N., Waesateh K., Soontaranon S. and Masa A. (2021). The effect of mastication time on the physical properties and structure of natural rubber. Journal of Elastomers and Plastics, 53(3), 228-240.
Cited: 1 doi: https://doi.org/10.1177/0095244320928566
54Surya I., Masa A., Ismail H. and Hayeemasae N. (2020). Acid-treated halloysite nanotubes filled natural rubber composites. IOP Conference Series: Materials Science and Engineering, 801(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/801/1/012087
55Worlee A., Homdong N. and Hayeemasae N. (2020). Application of polymer blend based on natural rubber latex and acrylic resin as a binder for wall paints. IOP Conference Series: Materials Science and Engineering, 773(1)
Cited: 1 doi: https://doi.org/10.1088/1757-899X/773/1/012032
56Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2020). BETTER BALANCE OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUND PROPERTIES BY THE USE OF MONTMORILLONITE WITH OPTIMUM SURFACE MODIFIER CONTENT. Rubber Chemistry and Technology, 93(3), 548-566.
Cited: 6 doi: https://doi.org/10.5254/rct.20.80407
57Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. International Journal of Biological Macromolecules, 154, 1255-1264.
Cited: 4 doi: https://doi.org/10.1016/j.ijbiomac.2019.10.280
58Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Influence of hydroxymethylated lignin on mechanical properties and payne effect of NR/BR compounds. Malaysian Journal of Analytical Sciences, 24(5), 810-819.
Cited: 0
59Masa A., Soontaranon S. and Hayeemasae N. (2020). Influence of Sulfur/Accelerator Ratio on Tensile Properties and Structural Inhomogeneity of Natural Rubber. Polymer (Korea), 44(4), 519-526.
Cited: 2 doi: https://doi.org/10.7317/pk.2020.44.4.519
60Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 6
Cited: 30 doi: https://doi.org/10.3389/fmats.2019.00329
61Hayeemasae N., Sensem Z., Sahakaro K. and Ismail H. (2020). Maleated natural rubber/halloysite nanotubes composites. Processes, 8(3)
Cited: 3 doi: https://doi.org/10.3390/pr8030286
62Fathurrohman M., Hayeemasae N. and Sahakaro K. (2020). Mechanical and Dynamical Properties of Natural Rubber-Montmorillonite Nanocomposites by Using In Situ Organomodified and Latex Compounding Method. Macromolecular Symposia, 391(1)
Cited: 0 doi: https://doi.org/10.1002/masy.201900130
63Masa A., Krem-Ae A., Ismail H. and Hayeemasae N. (2020). Possible use of sepiolite as alternative filler for natural rubber. Materials Research, 23(4)
Cited: 3 doi: https://doi.org/10.1590/1980-5373-MR-2020-0100
64Hayeemasae N., Sahakaro K. and Ismail H. (2020). Properties of unmodified and modified natural rubber/halloysite nanotubes composites. AIP Conference Proceedings, 2267
Cited: 0 doi: https://doi.org/10.1063/5.0016132
65Hayeemasae N. and Masa A. (2020). Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates. Polimeros, 30(2)
Cited: 1 doi: https://doi.org/10.1590/0104-1428.03120
66Hayeemasae N., Sensem Z., Surya I., Sahakaro K. and Ismail H. (2020). Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers, 12(4)
Cited: 8 doi: https://doi.org/10.3390/POLYM12040766
67Hayeemasae N. and Ismail H. (2020). Synergistic improvement of mechanical and magnetic properties of a new magnetorheological elastomer composites based on natural rubber and powdered waste natural rubber glove. Polimeros, 30(2)
Cited: 2 doi: https://doi.org/10.1590/0104-1428.10719
68Hayeemasae N. and Ismail H. (2020). Tea waste/carbon black hybrid filled natural rubber composites. Malaysian Journal of Fundamental and Applied Sciences, 16(6), 366-370.
Cited: 0 doi: https://doi.org/10.11113/mjfas.v16n6.1897
69Hayeemasae N. and Ismail H. (2020). Utilization of tea waste as an alternative filler for natural rubber. Jurnal Teknologi, 82(4), 109-115.
Cited: 3 doi: https://doi.org/10.11113/jt.v82.14400
70Hayeemasae N., Norhayati S., Ros M. and Ismail H. (2019). A new magnetorheological Elastomer based on natural Rubber/Waste Natural Rubber Glove Blends. KGK Kautschuk Gummi Kunststoffe, 72(1-2), 49-54.
Cited: 0
71Hayeemasae N. and Ismail H. (2019). Curing and swelling kinetics of new magnetorheological elastomer based on natural rubber/waste natural rubber gloves composites. Journal of Elastomers and Plastics, 51(7-8), 583-602.
Cited: 3 doi: https://doi.org/10.1177/0095244318803987
72Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2019). Dispersion and properties of natural rubber-montmorillonite nanocomposites fabricated by novel in situ organomodified and latex compounding method. Polymer Engineering and Science, 59(9), 1830-1839.
Cited: 7 doi: https://doi.org/10.1002/pen.25183
73Saiwari S., Waesateh K., Worlee A., Hayeemasae N., Pattani, Nakason C. and Thani S. (2019). Effects of devulcanization aid on mechanical and thermal properties of devulcanized rubber/virgin natural rubber blends. KGK Kautschuk Gummi Kunststoffe, 72(5), 35-41.
Cited: 2
74Hayeemasae N. and Ismail H. (2019). Enhancing the thermal stability of natural rubber/recycled ethylene propylene diene rubber blends through the use of bio-compatibilizers. Journal of Vinyl and Additive Technology, 25, E155-E165.
Cited: 4 doi: https://doi.org/10.1002/vnl.21674
75Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5)
Cited: 18 doi: https://doi.org/10.3390/pr7050315
76Hayeemasae N., Ismail H., Matchawet S. and Masa A. (2019). Kinetic of thermal degradation and thermal stability of natural rubber filled with titanium dioxide nanoparticles. Polymer Composites, 40(8), 3149-3155.
Cited: 5 doi: https://doi.org/10.1002/pc.25163
77Saiwari S., Sripornsawat B. and Hayeemasae N. (2019). Novel thermoplastic vulcanizates based on polyamide 12 blends: Influence of modified devulcanized natural rubber gloves on properties of the blends. Journal of Metals, Materials and Minerals, 29(3), 25-31.
Cited: 1 doi: https://doi.org/10.14456/jmmm.2019.30
78Hayeemasae N. and Ismail H. (2019). Reinforcement of epoxidized natural rubber through the addition of sepiolite. Polymer Composites, 40(3), 924-931.
Cited: 12 doi: https://doi.org/10.1002/pc.24762
79Hayeemasae N., Salleh S. and Ismail H. (2019). Sustainable Use of Chloroprene Rubber Waste as Blend Component with Natural Rubber, Epoxidized Natural Rubber and Styrene Butadiene Rubber. Journal of Polymers and the Environment, 27(10), 2119-2130.
Cited: 1 doi: https://doi.org/10.1007/s10924-019-01503-1
80Hayeemasae N., Song L. and Ismail H. (2019). Sustainable use of eggshell powder in the composite based on recycled polystyrene and virgin polystyrene mixture. International Journal of Polymer Analysis and Characterization, 24(3), 266-275.
Cited: 8 doi: https://doi.org/10.1080/1023666X.2019.1567089
81Hayeemasae N., Salleh S. and Ismail H. (2019). Using chloroprene rubber waste in rubber blends: Optimizing performance by adding fillers. Green Materials, 7(4), 156-167.
Cited: 1 doi: https://doi.org/10.1680/jgrma.18.00086
82Hayeemasae N., Salleh S. and Ismail H. (2019). Utilization of chloroprene rubber waste as blending component with natural rubber: aspect on metal oxide contents. Journal of Material Cycles and Waste Management, 21(5), 1095-1105.
Cited: 2 doi: https://doi.org/10.1007/s10163-019-00862-0
83Surya I., Hayeemasae N. and Ginting M. (2018). Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/343/1/012009
84Yasin S., Aziz K., Bakar I., Hayeemasae N. and Asiah S. (2018). Durability of helmet material under longitudinal and lateral drop impact. AIP Conference Proceedings, 2031
Cited: 0 doi: https://doi.org/10.1063/1.5066991
85Hayeemasae N., Rathnayake W. and Ismail H. (2018). Effect of ZnO nanoparticles on the simultaneous improvement in curing and mechanical properties of NR/ Recycled EPDM blends. Progress in Rubber, Plastics and Recycling Technology, 34(1), 1-18.
Cited: 2 doi: https://doi.org/10.1177/147776061803400101
86Surya I. and Hayeemasae N. (2018). Effects of alkanolamide addition on crosslink density, mechanical and morphological properties of chloroprene rubber compounds. IOP Conference Series: Materials Science and Engineering, 343(1)
Cited: 15 doi: https://doi.org/10.1088/1757-899X/343/1/012028
87Waesateh K., Saiwari S., Ismail H., Othman N., Soontaranon S. and Hayeemasae N. (2018). Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. International Journal of Polymer Analysis and Characterization, 23(3), 260-270.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2018.1438773
88Hayeemasae N., Surya I. and Ismail H. (2018). Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/309/1/012110
89Abdul Majid R., Ismail H. and Hayeemasae N. (2018). Poly(Vinyl Chloride)/Epoxidized Natural Rubber/Kenaf Powder Composites. Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications, 283-312.
Cited: 1 doi: https://doi.org/10.1016/B978-0-08-102160-6.00015-9
90Surya I., Sukeksi L. and Hayeemasae N. (2018). Studies on cure index, swelling behaviour, tensile and thermooxidative properties of natural rubber compounds in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 309(1)
Cited: 19 doi: https://doi.org/10.1088/1757-899X/309/1/012060
91Hayeemasae N., Rathnayake W. and Ismail H. (2017). Nano-sized TiO<inf>2</inf>-reinforced natural rubber composites prepared by latex compounding method. Journal of Vinyl and Additive Technology, 23(3), 200-209.
Cited: 20 doi: https://doi.org/10.1002/vnl.21497
92Hayeemasae N., Surya I. and Ismail H. (2016). Compatibilized natural rubber/recycled ethylene-propylene-diene rubber blends by biocompatibilizer. International Journal of Polymer Analysis and Characterization, 21(5), 396-407.
Cited: 14 doi: https://doi.org/10.1080/1023666X.2016.1160970
93Hayeemasae N., Ismail H., Khoon T., Husseinsyah S. and Harahap H. (2016). Effect of carbon black on the properties of polypropylene/recycled natural rubber glove blends. Progress in Rubber, Plastics and Recycling Technology, 32(4), 241-252.
Cited: 4 doi: https://doi.org/10.1177/147776061603200404
94Ismail H., Khoon T., Hayeemasae N. and Salmah H. (2015). Effect of oil palm ash on the properties of polypropylene/recycled natural rubber gloves/oil palm ash composites. BioResources, 10(1), 1495-1505.
Cited: 11 doi: https://doi.org/10.15376/biores.10.1.1495-1505
95Hayeemasae N., Ismail H. and Rashid A. (2015). Optimization of accelerators on curing characteristics, tensile, and dynamic mechanical properties of (natural rubber)/(recycled ethylene-propylene-diene-monomer) blends. Journal of Vinyl and Additive Technology, 21(2), 79-88.
Cited: 9 doi: https://doi.org/10.1002/vnl.21358
96Hayeemasae N. and Ismail H. (2015). Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites. Journal of Thermoplastic Composite Materials, 28(3), 415-430.
Cited: 5 doi: https://doi.org/10.1177/0892705713486124
97Hayeemasae N. and Ismail H. (2015). Thermo-Mechanical Performance of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends in the Presence of ZnO Nanoparticles. International Journal of Polymer Analysis and Characterization, 20(6), 514-528.
Cited: 7 doi: https://doi.org/10.1080/1023666X.2015.1050905
98Hayeemasae N. and Ismail H. (2014). Blending of Natural Rubber/Recycled Ethylene-Propylene-diene Rubber: Promoting the Interfacial Adhesion Between Phases by Natural Rubber Latex. International Journal of Polymer Analysis and Characterization, 19(2), 159-174.
Cited: 4 doi: https://doi.org/10.1080/1023666X.2014.873597
99Hayeemasae N., Ismail H. and Rashid A. (2014). Comparison of thermal stability of sulfur, peroxide and EB irradiation cured NR compounds containing ground EPDM waste. Advanced Materials Research, 844, 267-271.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.267
100Hayeemasae N. and Ismail H. (2014). Dynamic mechanical behavior of natural rubber/waste ethylene-propylene- diene rubber blends. KGK Kautschuk Gummi Kunststoffe, 67(7-8), 33-39.
Cited: 2
101Hayeemasae N. and Ismail H. (2014). Enhancing the thermal stability of natural rubber/recycled ethylene-propylene-diene rubber blends by means of introducing pre-vulcanised ethylene-propylene-diene rubber and electron beam irradiation. Materials and Design, 56, 1057-1067.
Cited: 19 doi: https://doi.org/10.1016/j.matdes.2013.12.020
102Hayeemasae N. and Ismail H. (2014). Fatigue life, thermal analysis and morphology of recycled poly(ethylene terephthalate)/commercial fillers hybrid filled natural rubber composites. Progress in Rubber, Plastics and Recycling Technology, 30(2), 115-128.
Cited: 7 doi: https://doi.org/10.1177/147776061403000204
103Hayeemasae N., Ismail H. and Azura A. (2014). Optimisation of accelerators and vulcanising systems on thermal stability of natural rubber/recycled ethylene-propylene-diene-monomer blends. Materials and Design, 53, 651-661.
Cited: 36 doi: https://doi.org/10.1016/j.matdes.2013.06.078
104Hayeemasae N., Ismail H. and Rashid A. (2014). Properties of natural rubber/recycled ethylene-propylene-diene rubber blends prepared using various vulcanizing systems. Iranian Polymer Journal (English Edition), 23(1), 37-45.
Cited: 16 doi: https://doi.org/10.1007/s13726-013-0197-4
105Hayeemasae N., Ismail H. and Thevy Ratnam C. (2014). Simultaneous Enhancement of Mechanical and Dynamic Mechanical Properties of Natural Rubber/Recycled Ethylene-Propylene-Diene Rubber Blends by Electron Beam Irradiation. International Journal of Polymer Analysis and Characterization, 19(3), 272-285.
Cited: 12 doi: https://doi.org/10.1080/1023666X.2014.880023
106Hayeemasae N., Ismail H. and Azura A. (2014). Thermal stability and aging characteristics of (natural rubber)/(waste ethylene-propylene-diene monomer terpolymer) blends. Journal of Vinyl and Additive Technology, 20(2), 99-107.
Cited: 5 doi: https://doi.org/10.1002/vnl.21334
107Hayeemasae N., Ismail H. and Azura A. (2013). Blending of Natural Rubber/Recycled Ethylene-Propylene-Diene Monomer: Cure Behaviors and Mechanical Properties. Polymer - Plastics Technology and Engineering, 52(5), 501-509.
Cited: 22 doi: https://doi.org/10.1080/03602559.2012.762020
108Hayeemasae N., Ismail H. and Azura A. (2013). Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends. Polymer Testing, 32(4), 631-639.
Cited: 49 doi: https://doi.org/10.1016/j.polymertesting.2013.03.019
109Hayeemasae N., Ismail H. and Azura A. (2013). Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends. Polymer Testing, 32(2), 385-393.
Cited: 73 doi: https://doi.org/10.1016/j.polymertesting.2012.11.003
110Hayeemasae N., Ismail H. and Azura A. (2013). Effects of virgin Ethylene-Propylene-Diene-Monomer and its preheating time on the properties of natural rubber/recycled Ethylene-Propylene-Diene-Monomer blends. Materials and Design, 50, 27-37.
Cited: 21 doi: https://doi.org/10.1016/j.matdes.2013.02.086
111Hayeemasae N., Ismail H. and Azura A. (2012). Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. Journal of Vinyl and Additive Technology, 18(2), 139-146.
Cited: 28 doi: https://doi.org/10.1002/vnl.20291
112Hayeemasae N., Ismail H. and Azura A. (2011). Recycled polyethylene terephthalate filled natural rubber compounds: Effects of filler loading and types of matrix. Journal of Elastomers and Plastics, 43(5), 429-449.
Cited: 29 doi: https://doi.org/10.1177/0095244311405503
113Hayeemasae N., Ismail H. and Azura A. (2011). The influence of recycled poly(ethylene terephthalate) powder on fatigue life, thermal stability, and morphology of Halloysite Nanotubes (HNTs) and precipitated silica filled natural rubber composites. Key Engineering Materials, 471-472, 628-633.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.628
114Hayeemasae N., Ismail H. and Azura A. (2011). The partial replacement of Halloysite Nanotubes (HNTs) and precipitated silica by recycled poly(ethylene terephthalate) powder on cure behavior tensile properties and morphology of natural rubber composites. Key Engineering Materials, 471-472, 622-627.
Cited: 2 doi: https://doi.org/10.4028/www.scientific.net/KEM.471-472.622
รวม Scopus 114 รายการ 612 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th