SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)

กรอง
ช่วงปี
ถึง
ตาราง ผลงานตีพิมพ์ Scopus ของ สุบฮาน สาและ
ลำดับรายละเอียดผลงาน
1Sarkar S., Aiswarya S., Salaeh S., Hirschberg V. and Banerjee S. (2025). Self-healing and shape memory functions in elastomers: Recent advances and future prospectives. Polymer Engineering and Science, 65(4), 1620-1654.
Cited: 0 doi: https://doi.org/10.1002/pen.27092
2Sarkar S., Aiswarya S., Salaeh S., Hirschberg V. and Banerjee S. (2025). Self-healing and shape memory functions in elastomers: Recent advances and future prospectives. Polymer Engineering and Science
Cited: 0 doi: https://doi.org/10.1002/pen.27092
3Chaipo S., Itsaradamkoeng P., Salaeh S., Wongtimnoi K., Putson C. and Zhang J. (2025). Tailored chain interaction of binary and ternary PVDF-HFP and PVDF-TrFE-CTFE / graphene nanoplatelets on dielectric properties and charge density capability. Polymer, 326
Cited: 0 doi: https://doi.org/10.1016/j.polymer.2025.128339
4Salaeh S., Thitithammawong A. and Banerjee S. (2024). A new strategy applying ternary blends of modified natural rubber with fluoroplastic and fluorocarbon elastomer for high-performance thermoplastic vulcanizate. Polymer Testing, 140
Cited: 0 doi: https://doi.org/10.1016/j.polymertesting.2024.108594
5Bunsanong A., Thongnuanchan B., Ninjan R., Salaeh S., Lopattananon N. and Masa A. (2024). Accelerator and zinc-free prevulcanized latex based on natural rubber-bearing benzyl chloride groups. Express Polymer Letters, 18(2), 229-242.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.16
6Habri H., Shahrizan A., Azmi I., Hambali N., Shamjuddin A., Salaeh S. and Jalil M. (2024). Degradation autocatalytic epoxidation of oleic acid derived from palm oil via in situ performic acid mechanism. Environmental Progress and Sustainable Energy
Cited: 0 doi: https://doi.org/10.1002/ep.14498
7Sarengan N., Salaeh S., Sagadevan S., Imam S., Kusumawardani C. and Mohd Kaus N. (2024). Exploring the n–p type zinc oxide/copper oxide nanocomposite under Xenon light irradiation with enhanced photocatalytic activities for norfloxacin and methyl orange. Journal of Materials Science: Materials in Electronics, 35(32)
Cited: 0 doi: https://doi.org/10.1007/s10854-024-13748-1
8Ninjan R., Thongnuanchan B., Lopattananon N., Salaeh S., Tongnuanchan P. and Buangam P. (2024). Heat-sealable paper fabricated using a latex coating based on modified natural rubber filled with gelatin. Express Polymer Letters, 18(11), 1077-1093.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.83
9Daud N., Rithwan A., Sagadevan S., Salaeh S., Adnan R., Imam S. and Mohd Kaus N. (2024). Synergistic effect from integrated palm oil biomass biochar enhanced nanoplate bismuth oxybromide for fluoroquinolone photodegradation under xenon light irradiation. Journal of Materials Science: Materials in Electronics, 35(24)
Cited: 0 doi: https://doi.org/10.1007/s10854-024-13361-2
10Ninjan R., Thongnuanchan B., Lopattananon N., Salaeh S. and Thitithammawong A. (2024). Thermally assisted healable film based on modified natural rubber-bearing benzyl chloride functionality. Express Polymer Letters, 18(7), 742-759.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2024.55
11Le H., Hoang T., Haider S., Subhradeep M., Reuter U., Dhakal K., Adhikari R., Reincke K., Salaeh S. and Wie?ner S. (2023). A new testing strategy based on the wetting concept for characterizing rubber-filler interaction in rubber compounds and its application to the study of the influence of epoxy groups and non-rubber components on rubber-filler interaction in natural rubber compounds. Express Polymer Letters, 17(5), 527-545.
Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2023.39
12Salprima Y., Banon C., Falahudin A., Reagen M., Mohd Kaus N. and Salaeh S. (2023). Fabrication of Silver-Silica Composite using the Carbo-thermal Degradation of Oil Palm Leaves for the Reduction of p-nitrophenol. International Journal of Technology, 14(2), 290-299.
Cited: 0 doi: https://doi.org/10.14716/ijtech.v14i2.5608
13Kassim M., Mohd Kaus N., Imam S., Sagadevan S. and Salaeh S. (2023). Rapid and facile chemical synthesis of Fe<inf>3</inf>O<inf>4</inf>/biochar nanocomposite for the adsorptive removal of fluoroquinolones from aqueous solution. Inorganic Chemistry Communications, 156
Cited: 0 doi: https://doi.org/10.1016/j.inoche.2023.111156
14Razuki A., Haida Mohd Kaus N., Sagadevann S., Salaeh S., Lokman Ibrahim M. and Mustaffa Al Bakri Abdullah M. (2023). Revolutionizing biodiesel production: A breakthrough synthesis and characterization of bismuth ferrite nanocatalysts for transesterification of palm and waste cooking oil. Fuel, 346
Cited: 0 doi: https://doi.org/10.1016/j.fuel.2023.128413
15Kao-Ian P., Banerjee S., Yudha S S. and Salaeh S. (2023). Strengthened Poly(vinylidene fluoride)/Epoxidized Natural Rubber Blend by a Reactive Compatibilizer Based on an Amino Acid-Modified Fluorocarbon Elastomer. Industrial and Engineering Chemistry Research
Cited: 0 doi: https://doi.org/10.1021/acs.iecr.3c04672
16Salaeh S., Thongnuanchan B., Bueraheng Y., Das A., Mohd Kaus N. and Wiessner S. (2023). The utilization of glycerol and xylitol in bio-based vitrimer-like elastomer: Toward more environmentally friendly recyclable and thermally healable crosslinked rubber. European Polymer Journal, 198
Cited: 0 doi: https://doi.org/10.1016/j.eurpolymj.2023.112422
17Salaeh S. and Kao-Ian P. (2022). Conductive epoxidized natural rubber nanocomposite with mechanical and electrical performance boosted by hybrid network structures. Polymer Testing, 108
Cited: 1 doi: https://doi.org/10.1016/j.polymertesting.2022.107493
18Aiswarya S., Awasthi P., Shivaprakash N., Cooke A., Salaeh S. and Banerjee S. (2022). High-temperature thermoplastic elastomeric materials by electron beam treatment - Challenges and opportunities. Radiation Technologies and Applications in Materials Science, 257-286.
Cited: 1 doi: https://doi.org/10.1201/9781003321910-10
19Thitithammawong A., Saiwari S., Salaeh S. and Hayeemasae N. (2022). Potent Application of Scrap from the Modified Natural Rubber Production as Oil Absorbent. Polymers, 14(23)
Cited: 0 doi: https://doi.org/10.3390/polym14235066
20Saiwari S., Nobnop S., Bueraheng Y., Thitithammawong A., Hayeemasae N. and Salaeh S. (2022). Segregated MWCNT Structure Formation in Conductive Rubber Nanocomposites by Circular Recycling of Rubber Waste. ACS Applied Polymer Materials
Cited: 0 doi: https://doi.org/10.1021/acsapm.2c01203
21Salaeh S., Nobnop S., Thongnuanchan B., Das A. and Wie?ner S. (2022). Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). Polymer, 262
Cited: 0 doi: https://doi.org/10.1016/j.polymer.2022.125444
22Salaeh S., Das A. and Wie?ner S. (2021). Design and fabrication of thermoplastic elastomer with ionic network: A strategy for good performance and shape memory capability. Polymer, 223
Cited: 4 doi: https://doi.org/10.1016/j.polymer.2021.123699
23Salaeh S., Das A., Wie?ner S. and Stapor M. (2021). Vitrimer-like material based on a biorenewable elastomer crosslinked with a dimeric fatty acid. European Polymer Journal, 151
Cited: 5 doi: https://doi.org/10.1016/j.eurpolymj.2021.110452
24Salaeh S., Das A., St?ckelhuber K. and Wie?ner S. (2020). Fabrication of a strain sensor from a thermoplastic vulcanizate with an embedded interconnected conducting filler network. Composites Part A: Applied Science and Manufacturing, 130
Cited: 20 doi: https://doi.org/10.1016/j.compositesa.2020.105763
25Salaeh S., Thitithammawong A. and Salae A. (2020). Highly enhanced electrical and mechanical properties of methyl methacrylate modified natural rubber filled with multiwalled carbon nanotubes. Polymer Testing, 85
Cited: 11 doi: https://doi.org/10.1016/j.polymertesting.2020.106417
26Salaeh S., Banda T., Pongdong V., Wiessner S., Das A. and Thitithammawong A. (2018). Compatibilization of poly(vinylidene fluoride)/natural rubber blend by poly(methyl methacrylate) modified natural rubber. European Polymer Journal, 107, 132-142.
Cited: 11 doi: https://doi.org/10.1016/j.eurpolymj.2018.08.007
27Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2018). Conductive elastomer composites with low percolation threshold based on carbon black and epoxidized natural rubber. Polymer Composites, 39(6), 1835-1844.
Cited: 2 doi: https://doi.org/10.1002/pc.24136
28Salaeh S., Cassagnau P., Boiteux G., Wiessner S. and Nakason C. (2018). Thermoplastic vulcanizates based on poly(vinylidene fluoride)/Epoxidized natural rubber blends: Effects of phenolic resin dosage and blend ratio. Materials Chemistry and Physics, 219, 222-232.
Cited: 11 doi: https://doi.org/10.1016/j.matchemphys.2018.08.029
29Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2017). Dynamically cured poly(vinylidene fluoride)/epoxidized natural rubber blends filled with ferroelectric ceramic barium titanate. Composites Part A: Applied Science and Manufacturing, 93, 107-116.
Cited: 16 doi: https://doi.org/10.1016/j.compositesa.2016.11.024
30Salaeh S., Kova??c M., Kosir D., Ku?i? H., Lavren?i?-?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2017). Reuse of TiO<inf>2</inf>-based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 333, 117-129.
Cited: 14 doi: https://doi.org/10.1016/j.jphotochem.2016.10.015
31Salaeh S., Juretic Perisic D., Bio?i? M., Ku?i? H., Babi? S., Lavren?i?-?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2016). Diclofenac removal by simulated solar assisted photocatalysis using TiO<inf>2</inf>-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 304, 289-302.
Cited: 96 doi: https://doi.org/10.1016/j.cej.2016.06.083
32Kova??c M., Salaeh S., Ku?i? H., ?uligoj A., Kete M., Fanetti M., ?tangar U., Dionysiou D. and Lon?ari? Bo?i? A. (2016). Solar-driven photocatalytic treatment of diclofenac using immobilized TiO<inf>2</inf>-based zeolite composites. Environmental Science and Pollution Research, 23(18), 17982-17994.
Cited: 29 doi: https://doi.org/10.1007/s11356-016-6985-6
33Salaeh S., Boiteux G., Cassagnau P. and Nakason C. (2015). Flexible 0-3 ceramic-polymer composites of barium titanate and epoxidized natural rubber. International Journal of Applied Ceramic Technology, 12(1), 106-115.
Cited: 22 doi: https://doi.org/10.1111/ijac.12129
34Salaeh S., Boiteux G., Gain O., Cassagnau P. and Nakason C. (2014). Dynamic mechanical and dielectric properties of poly(Vinylidene fluoride) and epoxidized natural rubber blends. Advanced Materials Research, 844, 97-100.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.97
35Salaeh S., Nakason C., Boiteux G. and Cassagnau P. (2013). Co-continuous phase structure and properties of poly(vinylidenefluoride)/epoxidized natural rubber blends. Advanced Materials Research, 626, 71-74.
Cited: 5 doi: https://doi.org/10.4028/www.scientific.net/AMR.626.71
36Salaeh S. and Nakason C. (2012). Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polymer Composites, 33(4), 489-500.
Cited: 76 doi: https://doi.org/10.1002/pc.22169
37Salaeh S., Muensit N., Bomlai P. and Nakason C. (2011). Ceramic/natural rubber composites: Influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. Journal of Materials Science, 46(6), 1723-1731.
Cited: 35 doi: https://doi.org/10.1007/s10853-010-4990-6
38Nakason C., Worlee A. and Salaeh S. (2008). Effect of vulcanization systems on properties and recyclability of dynamically cured epoxidized natural rubber/polypropylene blends. Polymer Testing, 27(7), 858-869.
Cited: 56 doi: https://doi.org/10.1016/j.polymertesting.2008.06.011
รวม Scopus 38 รายการ 419 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th