SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th

กรอง
ตาราง ผลงานตีพิมพ์ WoS/ISI ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1Manmeen, A., Kongjan, P., Palamanit, A. and Jariyaboon, R. (2023). Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. INDUSTRIAL CROPS AND PRODUCTS, 203
Cited: 6 doi: https://doi.org/10.1016/j.indcrop.2023.117162
2Manmeen, A., Kongjan, P., Rattanaya, T., Cheirsilp, B., Raybut, N. and Jariyaboon, R. (2023). Desulfurization of H2S-rich biogas using water scrubbing: Performance in pilot scale scrubber and scale-up estimation for the concentrated latex factory. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 42(3)
Cited: 1 doi: https://doi.org/10.1002/ep.14034
3Raketh, M., Kongjan, P., Trably, E., Samahae, N. and Jariyaboon, R. (2023). Effect of organic loading rate and effluent recirculation on biogas production of desulfated skim latex serum using up-flow anaerobic sludge blanket reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 327
Cited: 2 doi: https://doi.org/10.1016/j.jenvman.2022.116886
4Raketh, M., Kana, R., Kongjan, P., Muhammad, SAF., O-Thong, S., Mamimin, C. and Jariyaboon, R. (2023). Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 346
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2023.119031
5Khaonuan, S., Jariyaboon, R., Usmanbaha, N., Cheirsilp, B., Birkeland, NK. and Kongjan, P. (2023). Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation. BIOTECHNOLOGY JOURNAL, 18(10)
Cited: 0 doi: https://doi.org/10.1002/biot.202300026
6Manmeen, A., Kongjan, P., Palamanit, A. and Jariyaboon, R. (2023). The biochar, and pyrolysis liquid characteristics, of three indigenous durian peel; Monthong, Puangmanee, and Bacho. BIOMASS & BIOENERGY, 174
Cited: 3 doi: https://doi.org/10.1016/j.biombioe.2023.106816
7Jariyaboon, R., Hayeeyunu, S., Usmanbaha, N., Bin Ismail, S., O-Thong, S., Mamimin, C. and Kongjan, P. (2023). Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. FERMENTATION-BASEL, 9(7)
Cited: 2 doi: https://doi.org/10.3390/fermentation9070636
8Baidugem, S., Kongjan, P., Sani, K., Raketh, M., Saraluck, S., Chotisuwan, S. and Jariyaboon, R. (2023). Treatment and recycling of condensate wastewater for by-product production process of canned tuna factory: batch and continuous adsorption in a real production plant. DESALINATION AND WATER TREATMENT, 311, 175-187.
Cited: 0 doi: https://doi.org/10.5004/dwt.2023.29974
9Rattanaya, T., Kongjan, P., Cheewasedtham, C., Bunyakan, C., Yuso, P., Cheirsilp, B. and Jariyaboon, R. (2022). Application of palm oil mill waste to enhance biogas upgrading and hornwort cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 309
Cited: 4 doi: https://doi.org/10.1016/j.jenvman.2022.114678
10Raketh, M., Kongjan, P., Sani, K., Trably, E., Cheirsilp, B. and Jariyaboon, R. (2022). Biodegradation efficiencies and economic feasibility of single-stage and two-stage anaerobic digestion of desulfated Skim Latex Serum (SLS) by using rubber wood ash. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 162, 721-732.
Cited: 6 doi: https://doi.org/10.1016/j.psep.2022.04.043
11Kongjan, P., Tohlang, N., Khaonuan, S., Cheirsilp, B. and Jariyaboon, R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. BIOCHEMICAL ENGINEERING JOURNAL, 182
Cited: 3 doi: https://doi.org/10.1016/j.bej.2022.108437
12Sani, K., Jariyaboon, R., O-Thong, S., Cheirsilp, B., Kaparaju, P., Raketh, M. and Kongjan, P. (2022). Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 316
Cited: 3 doi: https://doi.org/10.1016/j.jenvman.2022.115307
13Sittijunda, S., Baka, S., Jariyaboon, R., Reungsang, A., Imai, T. and Kongjan, P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. FERMENTATION-BASEL, 8(10)
Cited: 3 doi: https://doi.org/10.3390/fermentation8100537
14Sani, K., Jariyaboon, R., O-Thong, S., Cheirsilp, B., Kaparaju, P., Wang, Y. and Kongjan, P. (2022). Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. WATER RESEARCH, 221
Cited: 8 doi: https://doi.org/10.1016/j.watres.2022.118736
15Sripitak, B., Jariyaboon, R., Raketh, M., Reungsang, A., Mamimin, C., O-Thong, S. and Kongjan, P. (2022). The Three-stage High Solid Anaerobic Digestion (TSHS- AD) under Ambient Temperature for Enhanced Biogas Production from Cow Manure. CHIANG MAI JOURNAL OF SCIENCE, 49(5), 1273-1295.
Cited: 0 doi: https://doi.org/10.12982/CMJS.2022.078
16Wang, Y., Jing, YY., Lu, CY., Kongjan, P., Wang, J., Awasthi, MK., Tahir, N. and Zhang, QG. (2021). A syntrophic co-fermentation model for bio-hydrogen production. JOURNAL OF CLEANER PRODUCTION, 317
Cited: 31 doi: https://doi.org/10.1016/j.jclepro.2021.128288
17Sani, K., Kongjan, P., Pakhathirathien, C., Cheirsilp, B., O-Thong, S., Raketh, M., Kana, R. and Jariyaboon, R. (2021). Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. JOURNAL OF WATER PROCESS ENGINEERING, 39
Cited: 13 doi: https://doi.org/10.1016/j.jwpe.2020.101661
18Prasertsan, P., Leamdum, C., Chantong, S., Mamimin, C., Kongjan, P. and O-Thong, S. (2021). Enhanced biogas production by co-digestion of crude glycerol and ethanol with palm oil mill effluent and microbial community analysis. BIOMASS & BIOENERGY, 148
Cited: 16 doi: https://doi.org/10.1016/j.biombioe.2021.106037
19Raketh, M., Jariyaboon, R., Kongjan, P., Trably, E., Reungsang, A., Sripitak, B. and Chotisuwan, S. (2021). Sulfate removal using rubber wood ash to enhance biogas production from sulfate-rich wastewater generated from a concentrated latex factory. BIOCHEMICAL ENGINEERING JOURNAL, 173
Cited: 11 doi: https://doi.org/10.1016/j.bej.2021.108084
20Rattanaya, T., Manmeen, A., Kongjan, P., Bunyakan, C., Reungsang, A., Prasertsit, K., Lombardi, L. and Jariyaboon, R. (2021). Upgrading biogas to biomethane using untreated groundwater-NaOH absorbent: Pilot-scale experiment and scale-up estimation for a palm oil mill. JOURNAL OF WATER PROCESS ENGINEERING, 44
Cited: 2 doi: https://doi.org/10.1016/j.jwpe.2021.102405
21Wijaya, AS., Jariyaboon, R., Reungsang, A. and Kongjan, P. (2020). Biochemical Methane Potential (BMP) of Cattle Manure, Chicken Manure, Rice Straw, and Hornwort in Mesophilic Mono-digestion. INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 12(3), 1-8.
Cited: 4 doi: https://doi.org/10.30880/ijie.2020.12.03.001
22Suksong, W., Tukanghan, W., Promnuan, K., Kongjan, P., Reungsang, A., Insam, H. and O-Thong, S. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 296
Cited: 28 doi: https://doi.org/10.1016/j.biortech.2019.122304
23Zulkifli, Z., Rasit, N., Siddique, MNI. and Kongjan, P. (2020). Dry mesophilic and thermophilic semi-continuous anaerobic digestion of cow manure: effects of solid loading rate on the process performance. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 10(4), 5972-5977.
Cited: 2 doi: https://doi.org/10.33263/BRIAC104.972977
24Wongfaed, N., Kongjan, P., Prasertsan, P. and O-Thong, S. (2020). Effect of oil and derivative in palm oil mill effluent on the process imbalance of biogas production. JOURNAL OF CLEANER PRODUCTION, 247
Cited: 16 doi: https://doi.org/10.1016/j.jclepro.2019.119110
25Suksong, W., Wongfaed, N., Sangsri, B., Kongjan, P., Prasertsan, P., Podmirseg, SM., Insam, H. and O-Thong, S. (2020). Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. INDUSTRIAL CROPS AND PRODUCTS, 145
Cited: 20 doi: https://doi.org/10.1016/j.indcrop.2020.112099
26Sunarno, JN., Prasertsan, P., Duangsuwan, W., Kongjan, P. and Cheirsilp, B. (2020). Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. BIOCHEMICAL ENGINEERING JOURNAL, 155
Cited: 16 doi: https://doi.org/10.1016/j.bej.2019.107471
27Promnuan, K., Higuchi, T., Imai, T., Kongjan, P., Reungsang, A. and O-Thong, S. (2020). Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 45(1), 263-274.
Cited: 19 doi: https://doi.org/10.1016/j.ijhydene.2019.10.237
28O-Thong, S., Mamimin, C., Kongjan, P. and Reungsang, A. (2020). Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. ADVANCES IN BIOENERGY, VOL. 5, 5, 249-308.
Cited: 3 doi: https://doi.org/10.1016/bs.aibe.2020.04.007
29Rattanaya, T., Kongjan, P., Bunyakan, C., Reungsang, A. and Jariyaboon, R. (2020). Upgrading biogas to biomethane: Alkaline recovery of absorbed solution by thermal decomposition. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 138, 157-166.
Cited: 10 doi: https://doi.org/10.1016/j.psep.2020.03.022
30Tepsour, M., Usmanbaha, N., Rattanaya, T., Jariyaboon, R., O-Thong, S., Prasertsan, P. and Kongjan, P. (2019). Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion. ENERGIES, 12(22)
Cited: 8 doi: https://doi.org/10.3390/en12224368
31Kongjan, P., Reungsang, A., Phasukarratchai, N. and Sittijunda, S. (2019). Biogas Production from Single Digestion of Napier Grass Hydrolysate and Co-Digestion of Solid Fraction of Microwave Acid Pretreated Napier Grass with Swine Manure. CHIANG MAI JOURNAL OF SCIENCE, 46(4), 639-652.
Cited: 5
32Suksong, W., Mamimin, C., Prasertsan, P., Kongjan, P. and O-Thong, S. (2019). Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. INDUSTRIAL CROPS AND PRODUCTS, 133, 193-202.
Cited: 27 doi: https://doi.org/10.1016/j.indcrop.2019.03.005
33Mamimin, C., Kongjan, P., O-Thong, S. and Prasertsan, P. (2019). Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 44(32), 17224-17237.
Cited: 30 doi: https://doi.org/10.1016/j.ijhydene.2019.03.275
34Salaeh, S., Kongjan, P., Panphon, S., Hemmanee, S., Reungsang, A. and Jariyaboon, R. (2019). Feasibility of ABE fermentation from Rhizoclonium spp. hydrolysate with low nutrient supplementation. BIOMASS & BIOENERGY, 127
Cited: 11 doi: https://doi.org/10.1016/j.biombioe.2019.105269
35Kongjan, P., Inchan, S., Chanthong, S., Jariyaboon, R., Reungsang, A. and O-Thong, S. (2019). Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 44(6), 3317-3324.
Cited: 28 doi: https://doi.org/10.1016/j.ijhydene.2018.09.066
36Usmanbaha, N., Jariyaboon, R., Reungsang, A., Kongjan, P. and Chu, CY. (2019). Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. ENERGIES, 12(13)
Cited: 22 doi: https://doi.org/10.3390/en12132529
37O-Thong, S., Mamimin, C., Kongjan, P. and Reungsang, A. (2019). Thermophilic Fermentation for Enhanced Biohydrogen Production. BIOHYDROGEN, 2ND EDITION, 123-139.
Cited: 8 doi: https://doi.org/10.1016/B978-0-444-64203-5.00005-8
38Suksong, W., Kongjan, P., Prasertsan, P. and O-Thong, S. (2019). Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 291
Cited: 42 doi: https://doi.org/10.1016/j.biortech.2019.121851
39Mamimin, C., Kongjan, P., O-Thong, S. and Prasertsan, P. (2018). Biohythane production from co-digestion of palm oil mill effluent with biomass residues of palm oil mill industry. NEW BIOTECHNOLOGY, 44, S121-S121.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1045
40Kongjan, P., Sama, K., O-Thong, S., Reunsang, A., Usmanbaha, N. and Jariyaboon, R. (2018). Continuous two-stage anaerobic co-digestion of Skim Latex Serum (SLS) and Rhizoclonium sp macro-algae for bio-hythane production. NEW BIOTECHNOLOGY, 44, S126-S126.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1062
41Wongfaed, N., O-Thong, S., Kongjan, P., Prasertsan, P. and Reungsang, A. (2018). Effect lipids in palm oil mill effluent on process imbalance of biogas production systems. NEW BIOTECHNOLOGY, 44, S107-S108.
Cited: 0 doi: https://doi.org/10.1016/j.nbt.2018.05.1000
42Kongjan, P., Sama, K., Sani, K., Jariyaboon, R. and Reungsang, A. (2018). Feasibility of bio-hythane production by codigesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 43(20), 9577-9590.
Cited: 17 doi: https://doi.org/10.1016/j.ijhydene.2018.04.052
43Panpong, K., Srimachai, T., Nuithitikul, K., Kongjan, P., O-Thong, S., Imai, T. and Kaewthong, N. (2017). Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. 2017 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 138, 260-266.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2017.10.050
44Saelor, S., Kongjan, P. and O-Thong, S. (2017). Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. 2017 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 138, 717-722.
Cited: 25 doi: https://doi.org/10.1016/j.egypro.2017.10.206
45Khongkliang, P., Kongjan, P., Utarapichat, B., Reungsang, A. and O-Thong, S. (2017). Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 42(45), 27584-27592.
Cited: 74 doi: https://doi.org/10.1016/j.ijhydene.2017.06.145
46Nualsri, C., Kongjan, P., Reungsang, A. and Imai, T. (2017). Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLOS ONE, 12(2)
Cited: 15 doi: https://doi.org/10.1371/journal.pone.0171248
47Mamimin, C., Prasertsan, P., Kongjan, P. and O-Thong, S. (2017). Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 29, 78-85.
Cited: 69 doi: https://doi.org/10.1016/j.ejbt.2017.07.006
48Suksong, W., Jehlee, A., Singkhala, A., Kongjan, P., Prasertsan, P., Imai, T. and O-Thong, S. (2017). Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. INDUSTRIAL CROPS AND PRODUCTS, 95, 502-511.
Cited: 31 doi: https://doi.org/10.1016/j.indcrop.2016.11.002
49Siripatana, C., Jijai, S. and Kongjan, P. (2016). Analysis and Extension of Gompertz-Type and Monod-Type Equations for Estimation of Design Parameters from Batch Anaerobic Digestion Experiments. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 1775
Cited: 7 doi: https://doi.org/10.1063/1.4965199
50Nualsri, C., Kongjan, P. and Reungsang, A. (2016). Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 41(40), 17884-17895.
Cited: 57 doi: https://doi.org/10.1016/j.ijhydene.2016.07.135
51Yingthavorn, N., Rakmak, N., Kongjan, P. and Siripatana, C. (2016). MATHEMATICAL MODELING OF EXISTING TWO STAGE ANAEROBIC DIGESTION PROCESS FOR PALM OIL MILL WASTEWATER. JURNAL TEKNOLOGI, 78(10-4), 21-26.
Cited: 2
52Suksong, W., Kongjan, P., Prasertsan, P., Imai, T. and O-Thong, S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY, 214, 166-174.
Cited: 49 doi: https://doi.org/10.1016/j.biortech.2016.04.077
53Jariyaboon, R., O-Thong, S. and Kongjan, P. (2015). Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. BIORESOURCE TECHNOLOGY, 198, 198-206.
Cited: 55 doi: https://doi.org/10.1016/j.biortech.2015.09.006
54Chaikitkaew, S., Kongjan, P. and O-Thong, S. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 838-844.
Cited: 38 doi: https://doi.org/10.1016/j.egypro.2015.11.575
55Suksong, W., Kongjan, P. and O-Thong, S. (2015). Biohythane Production from Co-Digestion of Palm Oil Mill Effluent with Solid Residues by Two-Stage Solid State Anaerobic Digestion Process. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 943-949.
Cited: 28 doi: https://doi.org/10.1016/j.egypro.2015.11.591
56Mamimin, C., Chaikitkaew, S., Niyasom, C., Kongjan, P. and O-Thong, S. (2015). Effect of Operating Parameters on Process Stability of Continuous Biohydrogen Production from Palm Oil Mill Effluent under Thermophilic Condition. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 815-821.
Cited: 14 doi: https://doi.org/10.1016/j.egypro.2015.11.571
57Wongfaed, N., Kongjan, P. and O-Thang, S. (2015). Effect of Substrate and Intermediate Composition on Foaming in Palm Oil Mill Effluent Anaerobic Digestion System. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 930-936.
Cited: 4 doi: https://doi.org/10.1016/j.egypro.2015.11.589
58Khongkliang, P., Kongjan, P. and O-Thong, S. (2015). Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 79, 827-832.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2015.11.573
59Mamimin, C., Singkhala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T. and O-Thong, S. (2015). Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 40(19), 6319-6328.
Cited: 115 doi: https://doi.org/10.1016/j.ijhydene.2015.03.068
60Panpong, K., Srisuwan, G., O-Thong, S. and Kongjan, P. (2014). Anaerobic Co-digestion of Canned Seafood Wastewater with Glycerol Waste for Enhanced Biogas Production. 2013 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES (2013 AEDCEE), 52, 328-336.
Cited: 29 doi: https://doi.org/10.1016/j.egypro.2014.07.084
61Kongjan, P., Jariyaboon, R. and O-Thong, S. (2014). Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 39(33), 19343-19348.
Cited: 34 doi: https://doi.org/10.1016/j.ijhydene.2014.06.057
62Kongjan, P., O-Thong, S. and Angelidaki, I. (2013). Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. ENGINEERING IN LIFE SCIENCES, 13(2), 118-125.
Cited: 51 doi: https://doi.org/10.1002/elsc.201100191
63Kongjan, P., O-Thong, S. and Angelidaki, I. (2011). Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. BIORESOURCE TECHNOLOGY, 102(5), 4028-4035.
Cited: 100 doi: https://doi.org/10.1016/j.biortech.2010.12.009
รวม WoS/ISI 63 รายการ 1,263 citations
ตาราง ผลงานตีพิมพ์ Scopus ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1Manmeen A., Kongjan P., Palamanit A. and Jariyaboon R. (2023). Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. Industrial Crops and Products, 203
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2023.117162
2Kongjan P., Reungsang A. and Sittijunda S. (2023). Conversion of glycerol derived from biodiesel production to butanol and 1,3-propanediol. Chemical Substitutes from Agricultural and Industrial By-Products: Bioconversion, Bioprocessing, and Biorefining, 337-353.
Cited: 0 doi: https://doi.org/10.1002/9783527841141.ch17
3Raketh M., Kongjan P., Trably E., Samahae N. and Jariyaboon R. (2023). Effect of organic loading rate and effluent recirculation on biogas production of desulfated skim latex serum using up-flow anaerobic sludge blanket reactor. Journal of Environmental Management, 327
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2022.116886
4Srimachai T., Meengam C., Kongjan P. and Rattanadilok Na Phuket K. (2023). Efficient Conversion of Oil Palm Trunk and Frond to Bioethanol and Biogas Using Two-Stage Steam Explosion Pretreatment. ASEAN Journal of Scientific and Technological Reports, 26(4), 11-20.
Cited: 0 doi: https://doi.org/10.55164/ajstr.v26i4.249622
5Raketh M., , , O-Thong S., Mamimin C. and Jariyaboon R. (2023). Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. Journal of Environmental Management, 346
Cited: 0 doi: https://doi.org/10.1016/j.jenvman.2023.119031
6Khaonuan S., , Usmanbaha N., and Birkeland N. (2023). Potential of butanol production from Thailand marine macroalgae using Clostridium beijerinckii ATCC 10132-based ABE fermentation. Biotechnology Journal
Cited: 0 doi: https://doi.org/10.1002/biot.202300026
7, Kongjan P., and Jariyaboon R. (2023). The biochar, and pyrolysis liquid characteristics, of three indigenous durian peel; Monthong, Puangmanee, and Bacho. Biomass and Bioenergy, 174
Cited: 0 doi: https://doi.org/10.1016/j.biombioe.2023.106816
8Jariyaboon R., , , Ismail S., O-Thong S., Mamimin C. and Kongjan P. (2023). Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 9(7)
Cited: 0 doi: https://doi.org/10.3390/fermentation9070636
9Rattanaya T., Kongjan P., Cheewasedtham C., Bunyakan C., Yuso P., Cheirsilp B. and Jariyaboon R. (2022). Application of palm oil mill waste to enhance biogas upgrading and hornwort cultivation. Journal of Environmental Management, 309
Cited: 1 doi: https://doi.org/10.1016/j.jenvman.2022.114678
10Raketh M., Kongjan P., Sani K., Trably E., Cheirsilp B. and Jariyaboon R. (2022). Biodegradation efficiencies and economic feasibility of single-stage and two-stage anaerobic digestion of desulfated Skim Latex Serum (SLS) by using rubber wood ash. Process Safety and Environmental Protection, 162, 721-732.
Cited: 0 doi: https://doi.org/10.1016/j.psep.2022.04.043
11Kongjan P., Tohlang N., Khaonuan S., Cheirsilp B. and Jariyaboon R. (2022). Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. Biochemical Engineering Journal, 182
Cited: 0 doi: https://doi.org/10.1016/j.bej.2022.108437
12Sani K., Jariyaboon R., O-Thong S., Cheirsilp B., Kaparaju P., Raketh M. and Kongjan P. (2022). Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery. Journal of Environmental Management, 316
Cited: 1 doi: https://doi.org/10.1016/j.jenvman.2022.115307
13Manmeen A., Kongjan P., Rattanaya T., Cheirsilp B., Raybut N. and Jariyaboon R. (2022). Desulfurization of H2S-rich biogas using water scrubbing: Performance in pilot scale scrubber and scale-up estimation for the concentrated latex factory. Environmental Progress and Sustainable Energy
Cited: 0 doi: https://doi.org/10.1002/ep.14034
14Sittijunda S., Baka S., Jariyaboon R., Reungsang A., IMAI T. and Kongjan P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 8(10)
Cited: 0 doi: https://doi.org/10.3390/fermentation8100537
15Sani K., Jariyaboon R., O-Thong S., Cheirsilp B., Kaparaju P., Wang Y. and Kongjan P. (2022). Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. Water Research, 221
Cited: 0 doi: https://doi.org/10.1016/j.watres.2022.118736
16Sripitak B., Jariyaboon R., Raketh M., Reungsang A., Mamimin C., O-Thong S. and Kongjan P. (2022). The Three-stage High Solid Anaerobic Digestion (TSHS-AD) under Ambient Temperature for Enhanced Biogas Production from Cow Manure. Chiang Mai Journal of Science, 49(5), 1273-1295.
Cited: 0 doi: https://doi.org/10.12982/CMJS.2022.078
17Wang Y., Jing Y., Lu C., Kongjan P., Wang J., Kumar Awasthi M., Tahir N. and Zhang Q. (2021). A syntrophic co-fermentation model for bio-hydrogen production. Journal of Cleaner Production, 317
Cited: 10 doi: https://doi.org/10.1016/j.jclepro.2021.128288
18Kongjan P., Usmanbaha N., Khaonuan S., Jariyaboon R., O-Thong S. and Reungsang A. (2021). Butanol production from algal biomass by acetone-butanol-ethanol fermentation process. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume 1, 421-446.
Cited: 0 doi: https://doi.org/10.1016/B978-0-323-85223-4.00014-2
19Kongjan P., Jariyaboon R., Reungsang A. and Sittijunda S. (2021). Co-fermentation of 1,3-propanediol and 2,3-butanediol from crude glycerol derived from the biodiesel production process by newly isolated Enterobacter sp.: Optimization factors affecting. Bioresource Technology Reports, 13
Cited: 4 doi: https://doi.org/10.1016/j.biteb.2020.100616
20Sani K., Kongjan P., Pakhathirathien C., Cheirsilp B., Raketh M., Kana R. and Jariyaboon R. (2021). Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment. Journal of Water Process Engineering, 39
Cited: 6 doi: https://doi.org/10.1016/j.jwpe.2020.101661
21Prasertsan P., Leamdum C., Chantong S., Mamimin C., Kongjan P. and O-Thong S. (2021). Enhanced biogas production by co-digestion of crude glycerol and ethanol with palm oil mill effluent and microbial community analysis. Biomass and Bioenergy, 148
Cited: 3 doi: https://doi.org/10.1016/j.biombioe.2021.106037
22Wongfaed N., Kongjan P., Suksong W., Prasertsan P. and O-Thong S. (2021). Strategies for recovery of imbalanced full-scale biogas reactor feeding with palm oil mill effluent. PeerJ, 9
Cited: 2 doi: https://doi.org/10.7717/peerj.10592
23Raketh M., Jariyaboon R., Kongjan P., Trably E., Reungsang A., Sripitak B. and Chotisuwan S. (2021). Sulfate removal using rubber wood ash to enhance biogas production from sulfate-rich wastewater generated from a concentrated latex factory. Biochemical Engineering Journal, 173
Cited: 6 doi: https://doi.org/10.1016/j.bej.2021.108084
24Rattanaya T., Manmeen A., Kongjan P., Bunyakan C., Reungsang A., Prasertsit K., Lombardi L. and Jariyaboon R. (2021). Upgrading biogas to biomethane using untreated groundwater-NaOH absorbent: Pilot-scale experiment and scale-up estimation for a palm oil mill. Journal of Water Process Engineering, 44
Cited: 0 doi: https://doi.org/10.1016/j.jwpe.2021.102405
25Wijaya A., Jariyaboon R., Reungsang A. and Kongjan P. (2020). Biochemical methane potential (BMP) of cattle manure, chicken manure, rice straw, and hornwort in mesophilic mono-digestion. International Journal of Integrated Engineering, 12(3), 1-8.
Cited: 4 doi: https://doi.org/10.30880/ijie.2020.12.03.001
26Suksong W., Tukanghan W., Promnuan K., Kongjan P., Reungsang A., Insam H., O&apos and Thong S. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology, 296
Cited: 29 doi: https://doi.org/10.1016/j.biortech.2019.122304
27Zulkifli Z., Rasit N., Siddique M. and Kongjan P. (2020). Dry mesophilic and thermophilic semi-continuous anaerobic digestion of cow manure: Effects of solid loading rate on the process performance. Biointerface Research in Applied Chemistry, 10(4), 5972-5977.
Cited: 0 doi: https://doi.org/10.33263/BRIAC104.972977
28Wongfaed N., Kongjan P., Prasertsan P., O&apos and Thong S. (2020). Effect of oil and derivative in palm oil mill effluent on the process imbalance of biogas production. Journal of Cleaner Production, 247
Cited: 11 doi: https://doi.org/10.1016/j.jclepro.2019.119110
29Suksong W., Wongfaed N., Sangsri B., Kongjan P., Prasertsan P., Podmirseg S., Insam H., O&apos and Thong S. (2020). Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. Industrial Crops and Products, 145
Cited: 12 doi: https://doi.org/10.1016/j.indcrop.2020.112099
30Sunarno J., Prasertsan P., Duangsuwan W., Kongjan P. and Cheirsilp B. (2020). Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. Biochemical Engineering Journal, 155
Cited: 9 doi: https://doi.org/10.1016/j.bej.2019.107471
31Promnuan K., Higuchi T., IMAI T., Kongjan P. and Reungsang A. (2020). Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. International Journal of Hydrogen Energy, 45(1), 263-274.
Cited: 13 doi: https://doi.org/10.1016/j.ijhydene.2019.10.237
32O-Thong S., Mamimin C., Kongjan P. and Reungsang A. (2020). Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Advances in Bioenergy, 5, 249-308.
Cited: 2 doi: https://doi.org/10.1016/bs.aibe.2020.04.007
33Rattanaya T., Kongjan P., Bunyakan C., Reungsang A. and Jariyaboon R. (2020). Upgrading biogas to biomethane: Alkaline recovery of absorbed solution by thermal decomposition. Process Safety and Environmental Protection, 138, 157-166.
Cited: 5 doi: https://doi.org/10.1016/j.psep.2020.03.022
34Tepsour M., Usmanbaha N., Rattanaya T., Jariyaboon R., O&apos, Thong S., Prasertsan P. and Kongjan P. (2019). Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion. Energies, 12(22)
Cited: 11 doi: https://doi.org/10.3390/en12224368
35Kongjan P., Reungsang A., Phasukarratchai N. and Sittijunda S. (2019). Biogas production from single digestion of napier grass hydrolysate and co-digestion of solid fraction of microwave acid pretreated napier grass with swine manure. Chiang Mai Journal of Science, 46(4), 639-652.
Cited: 4
36Suksong W., Mamimin C., Prasertsan P., Kongjan P., O&apos and Thong S. (2019). Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. Industrial Crops and Products, 133, 193-202.
Cited: 21 doi: https://doi.org/10.1016/j.indcrop.2019.03.005
37Mamimin C., Kongjan P., O&apos, Thong S. and Prasertsan P. (2019). Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. International Journal of Hydrogen Energy, 44(32), 17224-17237.
Cited: 23 doi: https://doi.org/10.1016/j.ijhydene.2019.03.275
38Salaeh S., Kongjan P., Panphon S., Hemmanee S., Reungsang A. and Jariyaboon R. (2019). Feasibility of ABE fermentation from Rhizoclonium spp. hydrolysate with low nutrient supplementation. Biomass and Bioenergy, 127
Cited: 7 doi: https://doi.org/10.1016/j.biombioe.2019.105269
39Khongkliang P., Jehlee A., Kongjan P. and Reungsang A. (2019). High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. International Journal of Hydrogen Energy, 44(60), 31841-31852.
Cited: 21 doi: https://doi.org/10.1016/j.ijhydene.2019.10.022
40Kongjan P., Inchan S., Chanthong S., Jariyaboon R., Reungsang A., O&apos and Thong S. (2019). Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. International Journal of Hydrogen Energy, 3317-3324.
Cited: 22 doi: https://doi.org/10.1016/j.ijhydene.2018.09.066
41Usmanbaha N., Jariyaboon R., Reungsang A., Kongjan P. and Chu C. (2019). Optimization of batch dark fermentation of chlorella sp. using mixed-cultures for simultaneous hydrogen and butyric acid production. Energies, 12(13)
Cited: 18 doi: https://doi.org/10.3390/en12132529
42O-Thong S., Mamimin C., Kongjan P. and Reungsang A. (2019). Thermophilic Fermentation for Enhanced Biohydrogen Production. Biomass, Biofuels, Biochemicals: Biohydrogen, Second Edition, 123-139.
Cited: 7 doi: https://doi.org/10.1016/B978-0-444-64203-5.00005-8
43Suksong W., Kongjan P., Prasertsan P., O&apos and Thong S. (2019). Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresource Technology, 291
Cited: 24 doi: https://doi.org/10.1016/j.biortech.2019.121851
44Kongjan P., Sama K., Sani K., Jariyaboon R. and Reungsang A. (2018). Feasibility of bio-hythane production by co-digesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. International Journal of Hydrogen Energy, 43(20), 9577-9590.
Cited: 15 doi: https://doi.org/10.1016/j.ijhydene.2018.04.052
45Panpong K., Srimachai T., Nuithitikul K., Kongjan P., IMAI T. and Kaewthong N. (2017). Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. Energy Procedia, 138, 260-266.
Cited: 4 doi: https://doi.org/10.1016/j.egypro.2017.10.050
46Saelor S. and Kongjan P. (2017). Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches. Energy Procedia, 138, 717-722.
Cited: 32 doi: https://doi.org/10.1016/j.egypro.2017.10.206
47Khongkliang P., Kongjan P., Utarapichat B. and Reungsang A. (2017). Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. International Journal of Hydrogen Energy, 42(45), 27584-27592.
Cited: 57 doi: https://doi.org/10.1016/j.ijhydene.2017.06.145
48Nualsri C., Kongjan P., Reungsang A. and IMAI T. (2017). Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLoS ONE, 12(2)
Cited: 10 doi: https://doi.org/10.1371/journal.pone.0171248
49Mamimin C., Prasertsan P., Kongjan P., O&apos and Thong S. (2017). Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electronic Journal of Biotechnology, 29, 78-85.
Cited: 55 doi: https://doi.org/10.1016/j.ejbt.2017.07.006
50Suksong W., Jehlee A., Singkhala A., Kongjan P., Prasertsan P., IMAI T., O&apos and Thong S. (2017). Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. Industrial Crops and Products, 95, 502-511.
Cited: 30 doi: https://doi.org/10.1016/j.indcrop.2016.11.002
51Siripatana C., Jijai S. and Kongjan P. (2016). Analysis and extension of Gompertz-type and Monod-type equations for estimation of design parameters from batch anaerobic digestion experiments. AIP Conference Proceedings, 1775
Cited: 9 doi: https://doi.org/10.1063/1.4965199
52Nualsri C., Kongjan P. and Reungsang A. (2016). Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. International Journal of Hydrogen Energy, 41(40), 17884-17895.
Cited: 54 doi: https://doi.org/10.1016/j.ijhydene.2016.07.135
53Yingthavorn N., Rakmak N., Kongjan P. and Siripatanaa C. (2016). Mathematical modeling of existing two stage anaerobic digestion process for palm oil mill wastewater. Jurnal Teknologi, 78(10-4), 21-26.
Cited: 4 doi: https://doi.org/10.11113/jt.v78.9886
54Suksong W., Kongjan P., Prasertsan P., IMAI T., O&apos and Thong S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166-174.
Cited: 46 doi: https://doi.org/10.1016/j.biortech.2016.04.077
55Panpong K., Nuithitikul K., O-Thong S. and Kongjan P. (2015). Anaerobic Co-Digestion Biomethanation of Cannery Seafood Wastewater with Microcystis SP; Blue Green Algae with/without Glycerol Waste. Energy Procedia, 79, 103-110.
Cited: 8 doi: https://doi.org/10.1016/j.egypro.2015.11.487
56Jariyaboon R. and Kongjan P. (2015). Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresource Technology, 198, 198-206.
Cited: 48 doi: https://doi.org/10.1016/j.biortech.2015.09.006
57Chaikitkaew S. and Kongjan P. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. Energy Procedia, 79, 838-844.
Cited: 44 doi: https://doi.org/10.1016/j.egypro.2015.11.575
58Suksong W. and Kongjan P. (2015). Biohythane Production from Co-Digestion of Palm Oil Mill Effluent with Solid Residues by Two-Stage Solid State Anaerobic Digestion Process. Energy Procedia, 79, 943-949.
Cited: 29 doi: https://doi.org/10.1016/j.egypro.2015.11.591
59Mamimin C., Chaikitkaew S., Niyasom C. and Kongjan P. (2015). Effect of Operating Parameters on Process Stability of Continuous Biohydrogen Production from Palm Oil Mill Effluent under Thermophilic Condition. Energy Procedia, 79, 815-821.
Cited: 13 doi: https://doi.org/10.1016/j.egypro.2015.11.571
60Wongfaed N., Kongjan P. and O-Thang S. (2015). Effect of Substrate and Intermediate Composition on Foaming in Palm Oil Mill Effluent Anaerobic Digestion System. Energy Procedia, 79, 930-936.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2015.11.589
61Khongkliang P. and Kongjan P. (2015). Hydrogen and Methane Production from Starch Processing Wastewater by Thermophilic Two-Stage Anaerobic Digestion. Energy Procedia, 79, 827-832.
Cited: 29 doi: https://doi.org/10.1016/j.egypro.2015.11.573
62Srimachai T., Nuithitikul K., Kongjan P. and Panpong K. (2015). Optimization and Kinetic Modeling of Ethanol Production from Oil Palm Frond Juice in Batch Fermentation. Energy Procedia, 79, 111-118.
Cited: 31 doi: https://doi.org/10.1016/j.egypro.2015.11.490
63Mamimin C., Singkhala A., Kongjan P., Suraraksa B., Prasertsan P., IMAI T., O&apos and Thong S. (2015). Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. International Journal of Hydrogen Energy, 40(19), 6319-6328.
Cited: 94 doi: https://doi.org/10.1016/j.ijhydene.2015.03.068
64Panpong K., Srisuwan G. and Kongjan P. (2014). Anaerobic co-digestion of canned seafood wastewater with glycerol waste for enhanced biogas production. Energy Procedia, 52, 328-336.
Cited: 26 doi: https://doi.org/10.1016/j.egypro.2014.07.084
65Kongjan P. and Jariyaboon R. (2014). Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 39(33), 19343-19348.
Cited: 29 doi: https://doi.org/10.1016/j.ijhydene.2014.06.057
66Panpong K., Srisuwan G. and Kongjan P. (2014). Enhanced biogas production from canned seafood wastewater by CO-digestion with glycerol waste and wolffia arrhiza. Energy Procedia, 52, 337-351.
Cited: 5 doi: https://doi.org/10.1016/j.egypro.2014.07.085
67Kongjan P., O&apos, Thong S. and Angelidaki I. (2013). Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. Engineering in Life Sciences, 13(2), 118-125.
Cited: 49 doi: https://doi.org/10.1002/elsc.201100191
68Kongjan P., O&apos, Thong S. and Angelidaki I. (2011). Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules. International Journal of Hydrogen Energy, 36(21), 14261-14269.
Cited: 25 doi: https://doi.org/10.1016/j.ijhydene.2011.06.130
69Kongjan P., O&apos, Thong S. and Angelidaki I. (2011). Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresource Technology, 102(5), 4028-4035.
Cited: 102 doi: https://doi.org/10.1016/j.biortech.2010.12.009
70Zhang Y., Olias L., Kongjan P. and Angelidaki I. (2011). Submersible microbial fuel cell for electricity production from sewage sludge. Water Science and Technology, 64(1), 50-55.
Cited: 31 doi: https://doi.org/10.2166/wst.2011.678
71Kongjan P., Kotay S., Min B. and Angelidaki I. (2010). Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105(5), 899-908.
Cited: 114 doi: https://doi.org/10.1002/bit.22616
72Kongjan P. and Angelidaki I. (2010). Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresource Technology, 101(20), 7789-7796.
Cited: 119 doi: https://doi.org/10.1016/j.biortech.2010.05.024
73Kaparaju P., Serrano M., Thomsen A., Kongjan P. and Angelidaki I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562-2568.
Cited: 550 doi: https://doi.org/10.1016/j.biortech.2008.11.011
74Kongjan P., Min B. and Angelidaki I. (2009). Biohydrogen production from xylose at extreme thermophilic temperatures (70 ?C) by mixed culture fermentation. Water Research, 43(5), 1414-1424.
Cited: 116 doi: https://doi.org/10.1016/j.watres.2008.12.016
รวม Scopus 74 รายการ 2,059 citations
ตาราง ผลงานตีพิมพ์ TCI ของ ประวิทย์ คงจันทร์
ลำดับรายละเอียดผลงาน
1ธีระพงษ์ บ้างบุญเรือง, นุชนาถ แช่มช้อย และประวิทย์ คงจันทร์. (2558). ผลผลิตชีวมวลและประสิทธิภาพการบำบัดน้ำเสีย ของสาหร่ายสไปรูลินา TISTR 8222. วารสาร มฉก.วิชาการ, 19(37), 55-70.
Cited:
รวม TCI 1 รายการ 0 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: scitech@g.psu.ac.th