SAT Data and Information Center

ศูนย์ข้อมูลและสารสนเทศเพื่อการบริหารองค์กรสู่ความเป็นเลิศ


ข้อมูลผลงานตีพิมพ์

แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th

กรอง
ตาราง ผลงานตีพิมพ์ Scopus ของ กรรณิการ์ สหกะโร
ลำดับรายละเอียดผลงาน
1Kraibut A., Kaewsakul W., Sahakaro K., Saiwari S., Noordermeer J. and Dierkes W. (2024). Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds. Materials, 17(2)
Cited: 0 doi: https://doi.org/10.3390/ma17020341
2Kraibut A., Saiwari S., Kaewsakul W., Noordermeer J., Sahakaro K. and Dierkes W. (2023). Dynamic Response and Molecular Chain Modifications Associated with Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds. Polymers, 15(1)
Cited: 0 doi: https://doi.org/10.3390/polym15010160
3Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Effect of hybrid carbon black/lignin on rheological, mechanical and thermal stability properties of NR/BR composites. Plastics, Rubber and Composites, 51(6), 293-305.
Cited: 1 doi: https://doi.org/10.1080/14658011.2021.1981718
4Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2022). Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties. Industrial Crops and Products, 185
Cited: 0 doi: https://doi.org/10.1016/j.indcrop.2022.115167
5Ridho M., Agustiany E., Rahmi Dn M., Madyaratri E., Ghozali M., Restu W., Falah F., Rahandi Lubis M., Syamani F., Nurhamiyah Y., Hidayati S., Sohail A., Karungamye P., Nawawi D., Iswanto A., Othman N., Mohamad Aini N., Hussin M., Sahakaro K. and Hayeema (2022). Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022
Cited: 0 doi: https://doi.org/10.1155/2022/1363481
6Sattayanurak S., Sahakaro K., Kaewsakul W., Reuvekamp L. and Blume A. (2021). Elucidating the role of clay-modifier on the properties of silica-and silica/nanoclay-reinforced natural rubber tire compounds. Express Polymer Letters, 15(7), 666-684.
Cited: 1 doi: https://doi.org/10.3144/EXPRESSPOLYMLETT.2021.56
7Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2021). Enhancing performance of silica-reinforced natural rubber tire tread compounds byapplying organoclayas secondary filler. Rubber Chemistry and Technology, 94(1), 121-144.
Cited: 2 doi: https://doi.org/10.5254/rct.20.80373
8Jehsoh N., Surya I., Sahakaro K., Ismail H. and Hayeemasae N. (2021). Modified palm stearin compatibilized natural rubber/halloysite nanotubes composites: Reinforcement versus strain-induced crystallization. Journal of Elastomers and Plastics, 53(3), 210-227.
Cited: 3 doi: https://doi.org/10.1177/0095244320928573
9Kaewsakul W., Noordermeer J., Sahakaro K., Sengloyluan K., Saramolee P., Dierkes W. and Blume A. (2021). Natural rubber and epoxidized natural rubber in combination with silica fillers for low rolling resistance tires. Chemistry, Manufacture and Applications of Natural Rubber, 247-316.
Cited: 0 doi: https://doi.org/10.1016/B978-0-12-818843-9.00009-6
10Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2020). BETTER BALANCE OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUND PROPERTIES BY THE USE OF MONTMORILLONITE WITH OPTIMUM SURFACE MODIFIER CONTENT. Rubber Chemistry and Technology, 93(3), 548-566.
Cited: 6 doi: https://doi.org/10.5254/rct.20.80407
11Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. International Journal of Biological Macromolecules, 154, 1255-1264.
Cited: 4 doi: https://doi.org/10.1016/j.ijbiomac.2019.10.280
12Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2020). Improvement of silica-reinforced natural rubber tire tread compounds by joint hybridization with small amounts of secondary fillers and polymers. Rubber Chemistry and Technology, 93(4), 652-671.
Cited: 2 doi: https://doi.org/10.5254/RCT.20.79962
13Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Influence of hydroxymethylated lignin on mechanical properties and payne effect of NR/BR compounds. Malaysian Journal of Analytical Sciences, 24(5), 810-819.
Cited: 0
14Mohamad Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2020). Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 6
Cited: 30 doi: https://doi.org/10.3389/fmats.2019.00329
15Hayeemasae N., Sahakaro K. and Ismail H. (2020). Maleated natural rubber compatibilized natural rubber/halloysite nanotubes composites. Polymer (Korea), 44(5), 596-602.
Cited: 1 doi: https://doi.org/10.7317/pk.2020.44.5.596
16Hayeemasae N., Sensem Z., Sahakaro K. and Ismail H. (2020). Maleated natural rubber/halloysite nanotubes composites. Processes, 8(3)
Cited: 3 doi: https://doi.org/10.3390/pr8030286
17Fathurrohman M., Hayeemasae N. and Sahakaro K. (2020). Mechanical and Dynamical Properties of Natural Rubber-Montmorillonite Nanocomposites by Using In Situ Organomodified and Latex Compounding Method. Macromolecular Symposia, 391(1)
Cited: 0 doi: https://doi.org/10.1002/masy.201900130
18Hayeemasae N., Jehsoh N. and Sahakaro K. (2020). Promoting the strain-induced crystallization of NR/HNT composites through the use of modified palm stearin. AIP Conference Proceedings, 2205
Cited: 0 doi: https://doi.org/10.1063/1.5142974
19Hayeemasae N., Sahakaro K. and Ismail H. (2020). Properties of unmodified and modified natural rubber/halloysite nanotubes composites. AIP Conference Proceedings, 2267
Cited: 0 doi: https://doi.org/10.1063/5.0016132
20Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2020). SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUNDS CONTAINING BIO-BASED PROCESS OILS. I: ASPECTS of MIXING SEQUENCE and EPOXIDE CONTENT. Rubber Chemistry and Technology, 93(2), 360-377.
Cited: 7 doi: https://doi.org/10.5254/RCT.19.81462
21Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2020). Silica-reinforced natural rubber tire tread compounds containing bio-based process oils. II: Influence of epoxide and amino functional groups. Rubber Chemistry and Technology, 93(1), 195-207.
Cited: 7 doi: https://doi.org/10.5254/rct.19.81461
22Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W., Reuvekamp L., Blume A. and Noordermeer J. (2020). Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polymer Testing, 81
Cited: 36 doi: https://doi.org/10.1016/j.polymertesting.2019.106173
23Hayeemasae N., Sensem Z., Surya I., Sahakaro K. and Ismail H. (2020). Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers, 12(4)
Cited: 8 doi: https://doi.org/10.3390/POLYM12040766
24Fathurrohman M., Rugmai S., Hayeemasae N. and Sahakaro K. (2019). Dispersion and properties of natural rubber-montmorillonite nanocomposites fabricated by novel in situ organomodified and latex compounding method. Polymer Engineering and Science, 59(9), 1830-1839.
Cited: 7 doi: https://doi.org/10.1002/pen.25183
25Aini N., Othman N., Hussin M., Sahakaro K. and Hayeemasae N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5)
Cited: 18 doi: https://doi.org/10.3390/pr7050315
26Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2019). Silanization Efficiency of Silica/Silane in Dependence of Amines in Natural Rubber-based Tire Compounds. IOP Conference Series: Materials Science and Engineering, 548(1)
Cited: 0 doi: https://doi.org/10.1088/1757-899X/548/1/012001
27Sattayanurak S., Noordermeer J., Sahakaro K., Kaewsakul W., Dierkes W. and Blume A. (2019). Silica-Reinforced Natural Rubber: Synergistic Effects by Addition of Small Amounts of Secondary Fillers to Silica-Reinforced Natural Rubber Tire Tread Compounds. Advances in Materials Science and Engineering, 2019
Cited: 31 doi: https://doi.org/10.1155/2019/5891051
28Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2018). Enhancing the silanization reaction of the silica-silane system by different amines in model and practical silica-filled natural rubber compounds. Polymers, 10(6)
Cited: 23 doi: https://doi.org/10.3390/polym10060584
29Sengloyluan K., Noordermeer J., Sahakaro K., Dierkes W. and Blume A. (2018). Improvement of natural rubber/silica interaction by silane grafting of the polymer. Rubber World, 259(3), 17-21.
Cited: 0
30Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2018). Promoting interfacial compatibility of silica-reinforced natural rubber tire compounds byaliphatic amine. Rubber Chemistry and Technology, 91(2), 433-452.
Cited: 10 doi: https://doi.org/10.5254/rct.18.81630
31Sahakaro K. (2017). Mechanism of reinforcement using nanofillers in rubber nanocomposites. Progress in Rubber Nanocomposites, 81-113.
Cited: 19 doi: https://doi.org/10.1016/B978-0-08-100409-8.00003-6
32Hayichelaeh C., Reuvekamp L., Dierkes W., Blume A., Noordermeer J. and Sahakaro K. (2017). Reinforcement of natural rubber by silica/silane in dependence of different amine types. Rubber Chemistry and Technology, 90(4), 651-666.
Cited: 10 doi: https://doi.org/10.5254/rct.82.83708
33Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2017). Silane grafted natural rubber and its compatibilization effect on silica-reinforced rubber tire compounds. Express Polymer Letters, 11(12), 1003-1022.
Cited: 18 doi: https://doi.org/10.3144/expresspolymlett.2017.95
34Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2016). Compatibilisation of silica-filled natural rubber compounds by functionalised low molecular weight polymer. Journal of Rubber Research, 19(1), 28-42.
Cited: 6
35Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2016). Compatibilization of silica-filled natural rubber compounds by combined effects of functionalized low molecular weight rubber and silane. Journal of Elastomers and Plastics, 48(2), 145-163.
Cited: 16 doi: https://doi.org/10.1177/0095244314568469
36Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Factors influencing the flocculation process in silica-reinforced natural rubber compounds. Journal of Elastomers and Plastics, 48(5), 426-441.
Cited: 12 doi: https://doi.org/10.1177/0095244315580456
37Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Reduced ethanol emissions by a combination of epoxidized natural rubber and silane coupling agent for silica-reinforced natural rubber-based tire treads. Rubber Chemistry and Technology, 89(3), 419-435.
Cited: 17 doi: https://doi.org/10.5254/rct.16.84813
38Sengloyluan K., Dierkes W., Noordermeer J. and Sahakaro K. (2016). Reinforcement Efficiency of silica in dependence of different types of silane coupling Agents in natural rubber-based tire compounds. KGK Kautschuk Gummi Kunststoffe, 69(5), 44-53.
Cited: 8
39Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2016). Synergistic effects in silica-reinforced natural rubber compounds compatibilised by ENR in combination with different silane coupling agent types. Journal of Rubber Research, 19(3), 170-189.
Cited: 3
40Sarkawi S., Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2015). A review on reinforcement of natural rubber by silica fillers for use in low-rolling resistance tyres. Journal of Rubber Research, 18(4), 203-233.
Cited: 25
41Kaewsakul W. and Sahakaro K. (2015). Formulation optimisation for silica-reinforced natural rubber compounds. Gummi, Fasern, Kunststoffe, 68(5), 300-310.
Cited: 0
42Moojea-Te C., Rungvichaniwat A. and Sahakaro K. (2015). Influence of processing oil based on modified epoxidized vegetable oil with N-phenyl-?-phenylenediamine (PPD) on extrusion process behaviors of natural rubber compounds. Key Engineering Materials, 659, 423-427.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.423
43Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2015). Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polymer Engineering and Science, 55(4), 836-842.
Cited: 72 doi: https://doi.org/10.1002/pen.23949
44Petchkaew A., Sahakaro K., Dierkes W. and Noordermeer J. (2015). Petroleum-based safe process oils in NR and NR/SBR blends: Part III. Effects of oil types and contents on the properties of carbon black filled compounds. KGK Kautschuk Gummi Kunststoffe, 68(9), 20-29.
Cited: 5
45Toh-Ae P., Junhasavasdikul B., Lopattananon N. and Sahakaro K. (2015). Photocatalytic activity and properties of nanotitanium dioxide-filled natural rubber in the presence of coupling agents. Key Engineering Materials, 659, 474-478.
Cited: 0 doi: https://doi.org/10.4028/www.scientific.net/KEM.659.474
46Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2014). Comparative properties of silica- and carbon blackreinforced natural rubber in the presence of epoxidized lowmolecular weight polymer. Rubber Chemistry and Technology, 87(2), 320-339.
Cited: 26 doi: https://doi.org/10.5254/rct.13.86970
47Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica. Rubber Chemistry and Technology, 87(2), 291-310.
Cited: 35 doi: https://doi.org/10.5254/RCT.13.86990
48Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Optimization of epoxidation degree and silane coupling agent content for silica-filled epoxidized natural rubber tire tread compounds. Advanced Materials Research, 844, 243-246.
Cited: 3 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.243
49Saramolee P., Lopattananon N. and Sahakaro K. (2014). Preparation and some properties of modified natural rubber bearing grafted poly(methyl methacrylate) and epoxide groups. European Polymer Journal, 56(1), 1-10.
Cited: 38 doi: https://doi.org/10.1016/j.eurpolymj.2014.04.008
50Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2014). Property enhancement of silica-filled natural rubber compatibilized with epoxidized low molecular weight rubber by extra sulfur. Advanced Materials Research, 844, 235-238.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.235
51Sengloyluan K., Sahakaro K. and Noordermeer J. (2014). Silica-reinforced natural rubber compounds compatibilized through the use of epoxide functional groups and TESPT combination. Advanced Materials Research, 844, 272-275.
Cited: 4 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.272
52Sengloyluan K., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. European Polymer Journal, 51(1), 69-79.
Cited: 144 doi: https://doi.org/10.1016/j.eurpolymj.2013.12.010
53Toh-Ae P., Junhasavasdikul B., Lopattananon N. and Sahakaro K. (2014). Surface modification of TiO2 nanoparticles by grafting with silane coupling agent. Advanced Materials Research, 844, 276-279.
Cited: 7 doi: https://doi.org/10.4028/www.scientific.net/AMR.844.276
54Kaewsakul W., Dierkes W., Noordermeer J. and Sahakaro K. (2014). Use of disulfide-based silane coupling agents with compensation of sulfur in silica-reinforced natural rubber Compounds. KGK Kautschuk Gummi Kunststoffe, 67(5), 33-39.
Cited: 1
55Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2014). Verification of interactions between silica and epoxidised squalene as a model for epoxidised natural rubber. Journal of Rubber Research, 17(3), 129-142.
Cited: 7
56Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2013). Alternative secondary accelerator for silica-filled natural rubber formulations. KGK Kautschuk Gummi Kunststoffe, 66(9), 33-38.
Cited: 1
57Toh-Ae P., Pongprayoon T., Lopattananon N. and Sahakaro K. (2013). Comparison of properties of admicellar polymerization surface modified silica- and conventional fillers-reinforced tyre tread compounds. Asian Journal of Chemistry, 25(9), 5226-5232.
Cited: 3 doi: https://doi.org/10.14233/ajchem.2013.f23
58Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2013). Optimization of rubber formulation for silica-reinforced natural rubber compounds. Rubber Chemistry and Technology, 86(2), 313-329.
Cited: 30 doi: https://doi.org/10.5254/RCT.13.87970
59Petchkaew A., Sahakaro K. and Noordermeer J. (2013). Petroleum-based safe process oils in NR, SBR and their blends: Study on unfilled compounds. Part I. Oil characteristics and solubility aspects. KGK Kautschuk Gummi Kunststoffe, 66(4), 43-47.
Cited: 10
60Petchkaew A., Sahakaro K. and Noordermeer J. (2013). Petroleum-based safe process oils in NR, SBR and their blends: Study on unfilled compounds. Part II. Properties. KGK Kautschuk Gummi Kunststoffe, 66(5), 21-27.
Cited: 8
61Saramolee P., Sahakaro K., Lopattananon N., Dierkes W. and Noordermeer J. (2013). Silica-reinforced natural rubber with epoxidized low molecular weight rubber as a compatibilizer. Advanced Materials Research, 747, 522-525.
Cited: 1 doi: https://doi.org/10.4028/www.scientific.net/AMR.747.522
62Narathichat M., Kummerl?we C., Vennemann N., Sahakaro K. and Nakason C. (2012). Influence of epoxide level and reactive blending on properties of epoxidized natural rubber and nylon-12 blends. Advances in Polymer Technology, 31(2), 118-129.
Cited: 22 doi: https://doi.org/10.1002/adv.20243
63Kaewsakul W., Sahakaro K., Dierkes W. and Noordermeer J. (2012). Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rubber Chemistry and Technology, 85(2), 277-294.
Cited: 105 doi: https://doi.org/10.5254/rct.12.88935
64Sahakaro K. and Beraheng A. (2011). Epoxidized natural oils as the alternative safe process oils in rubber compounds. Rubber Chemistry and Technology, 84(2), 200-214.
Cited: 34 doi: https://doi.org/10.5254/1.3577518
65Kaewsakul W., Sahakaro K. and Noordermeer J. (2011). Optimization of mixing conditions for silica-reinforced natural rubber compounds. Chemicke Listy, 105(15 SPEC. ISSUE)
Cited: 0
66Narathichat M., Sahakaro K. and Nakason C. (2010). Assessment degradation of natural rubber by moving die processability test and FTIR spectroscopy. Journal of Applied Polymer Science, 115(3), 1702-1709.
Cited: 25 doi: https://doi.org/10.1002/app.31194
67Kalkornsurapranee E., Sahakaro K., Kaesaman A. and Nakason C. (2010). Influence of reaction volume on the properties of natural rubber-g-methyl methacrylate. Journal of Elastomers and Plastics, 42(1), 17-34.
Cited: 9 doi: https://doi.org/10.1177/0095244309345410
68Sahakaro K., Sengloyluan K. and Noordermeer J. (2010). Mechanical, dynamic and swelling properties of NR/EPDM blends. Gummi, Fasern, Kunststoffe, 63(12), 775-781.
Cited: 0
69Kalkornsurapranee E., Sahakaro K., Kaesaman A. and Nakason C. (2009). From a laboratory to a pilot scale production of natural rubber grafted with PMMA. Journal of Applied Polymer Science, 114(1), 587-597.
Cited: 23 doi: https://doi.org/10.1002/app.30529
70Sahakaro K., Pongpaiboon C. and Nakason C. (2009). Improved mechanical properties of NR/EPDM blends by controlling the migration of curative and filler via reactive processing technique. Journal of Applied Polymer Science, 111(4), 2035-2043.
Cited: 9 doi: https://doi.org/10.1002/app.29193
71Pechurai W., Sahakaro K. and Nakason C. (2009). Influence of phenolic curative on crosslink density and other related properties of Dynamically cured NR/HDPE blends. Journal of Applied Polymer Science, 113(2), 1232-1240.
Cited: 18 doi: https://doi.org/10.1002/app.30036
72Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2009). Multifunctional peroxide as alternative crosslink agents for dynamically vulcanized epoxidized natural rubber/polypropylene blends. Journal of Applied Polymer Science, 111(2), 819-825.
Cited: 11 doi: https://doi.org/10.1002/app.29129
73Sahakaro K. and Pantupon N. (2008). Improving the mechanical properties of ENR/NBR blends via masterbatches with initial accelerator concentration gradients. International Polymer Processing, 23(2), 141-145.
Cited: 1 doi: https://doi.org/10.3139/217.2020
74Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2008). Reactive blending, reinforcement and curing of NR/BR/EPDM compounds for tyre sidewall applications. Gummi, Fasern, Kunststoffe, 61(3), 163-176.
Cited: 0
75Sahakaro K. and Beraheng S. (2008). Reinforcement of maleated natural rubber by precipitated silica. Journal of Applied Polymer Science, 109(6), 3839-3848.
Cited: 49 doi: https://doi.org/10.1002/app.28483
76Pechurai W., Nakason C. and Sahakaro K. (2008). Thermoplastic natural rubber based on oil extended NR and HDPE blends: Blend compatibilizer, phase inversion composition and mechanical properties. Polymer Testing, 27(5), 621-631.
Cited: 30 doi: https://doi.org/10.1016/j.polymertesting.2008.04.001
77Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. I. Preparation, cure characteristics and mechanical properties. Journal of Applied Polymer Science, 103(4), 2538-2546.
Cited: 17 doi: https://doi.org/10.1002/app.25088
78Sahakaro K., Talma A., Datta R. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. II. Characterization. Journal of Applied Polymer Science, 103(4), 2547-2554.
Cited: 11 doi: https://doi.org/10.1002/app.25113
79Sahakaro K., Datta R., Baaij J. and Noordermeer J. (2007). Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. III. Assessment of the blend ozone- And fatigue-resistance in comparison with a conventional NR/BR compound. Journal of Applied Polymer Science, 103(4), 2555-2563.
Cited: 17 doi: https://doi.org/10.1002/app.25101
80Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends. Polymer Testing, 26(4), 537-546.
Cited: 69 doi: https://doi.org/10.1016/j.polymertesting.2007.02.002
81Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). NR/PP thermoplastic vulcanizates: Selection of optimal peroxide type and concentration in relation to mixing conditions. Journal of Applied Polymer Science, 106(4), 2204-2209.
Cited: 30 doi: https://doi.org/10.1002/app.25935
82Sahakaro K., Naskar N., Datta R. and Noordermeer J. (2007). Reactive blending, reinforcement and curing of NR/BR/EPDM compounds for tire sidewall applications. Rubber Chemistry and Technology, 80(1), 115-138.
Cited: 8 doi: https://doi.org/10.5254/1.3548160
83Thitithammawong A., Nakason C., Sahakaro K. and Noordermeer J. (2007). Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: Selection of optimal peroxide type and concentration in relation to mixing conditions. European Polymer Journal, 43(9), 4008-4018.
Cited: 34 doi: https://doi.org/10.1016/j.eurpolymj.2007.06.035
84Lopattananon N., Panawarangkul K., Sahakaro K. and Ellis B. (2006). Performance of pineapple leaf fiber-natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 102(2), 1974-1984.
Cited: 147 doi: https://doi.org/10.1002/app.24584
85Nakason C., Pechurai W., Sahakaro K. and Kaesaman A. (2006). Rheological, thermal, and curing properties of natural rubber-g-poly(methyl methacrylate). Journal of Applied Polymer Science, 99(4), 1600-1614.
Cited: 25 doi: https://doi.org/10.1002/app.22518
86Nakason C., Pechurai W., Sahakaro K. and Kaesaman A. (2005). Rheological, mechanical and morphological properties of thermoplastic vulcanizates based on NR-g-PMMA/PMMA blends. Polymers for Advanced Technologies, 16(8), 592-599.
Cited: 26 doi: https://doi.org/10.1002/pat.634
87Kovuttikulrangsie S., Sahakaro K., Intarakong C. and Klinpituksa P. (2004). PMMA blended and DPNR-g-PMMA coated DPNR and NR-LA for dipping applications. Journal of Applied Polymer Science, 93(2), 833-844.
Cited: 8 doi: https://doi.org/10.1002/app.20535
88Gosden R., Sahakaro K., Johnson A., Chen J., Li R., Wang X. and Mesz?na Z. (2001). Living polymerisation reactors: Molecular weight distribution control using inverse neural network models. Polymer Reaction Engineering, 9(4), 249-270.
Cited: 10 doi: https://doi.org/10.1081/PRE-100107509
89Sahakaro K., Chaibundit C., Kaligradaki Z., Mai S., Heatley F., Booth C., Padget J. and Shirley I. (2000). Clouding of aqueous solutions of difunctional tapered-statistical copolymers of ethylene oxide and 1,2-butylene oxide. European Polymer Journal, 36(9), 1835-1842.
Cited: 16 doi: https://doi.org/10.1016/S0014-3057(99)00254-2
รวม Scopus 89 รายการ 1,485 citations

Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: scitech@g.psu.ac.th